A mid-year selection of epigenetic topics

Here are the most popular of the 65 posts I’ve made so far in 2018, starting from the earliest:

The pain societies instill into children

DNA methylation and childhood adversity

Epigenetic mechanisms of muscle memory

Sex-specific impacts of childhood trauma

Sleep and adult brain neurogenesis

This dietary supplement is better for depression symptoms than placebo

The epigenetic clock theory of aging

A flying human tethered to a monkey

Immune memory in the brain

The lack of oxygen’s epigenetic effects on a fetus

Advertisements

Ideaesthesia!

This 2018 UK review subject was colored-hearing experiences from music:

“Music-colour synaesthesia has a broad scope encompassing not only tone-colour synaesthesia elicited on hearing individual tones, but a complex and idiosyncratic mixture of phenomenological experiences often mediated by timbre, tempo, emotion and differing musical style.

The possession of synaesthesia or absolute pitch was shown to have very little effect on the actual colours chosen for each of the musical excerpts, but it might be reasonable to expect that music that elicits a strong emotional response may be more likely to induce synaesthesia than music that does not.

The examination of eight neuroimaging studies were found to be largely inconclusive in respect of confirming the perceptual nature of music-colour synaesthesia. Neither the hyperconnectivity nor the disinhibited feedback theory currently holds as a single categorical explanation for synaesthesia.

Theories promoting the notion of ‘ideaesthesia’ have highlighted the importance of the role of concept and meaning in the understanding of synaesthesia..and a replacement definition: Synaesthesia is a phenomenon in which a mental activation of a certain concept or idea is associated consistently with a certain perception-like experience.”

Much of the review was philosophizing and casting around for clues. The review cited interesting studies and reviews, including The Merit of Synesthesia for Consciousness Research.


One relevant element missed by the underlying research and the review was critical periods of human development. A cited reference in How brains mature during critical periods was Sensitive periods in human development: Evidence from musical training (not freely available) which illuminated some aspects of the research:

“In contrast to a critical period, where a function cannot be acquired outside the specific developmental window, a sensitive period denotes a time where sensory experience has a relatively greater influence on behavioral and cortical development. Sensitive periods may also be times when exposure to specific stimuli stimulates plasticity, enhancing changes at the neuronal and behavioral levels.

The developmental window for absolute pitch may be more similar to a critical than a sensitive period.

The auditory cortex appears to have an unusually long period of developmental plasticity compared with other sensory systems; changes in its cellular organization and connectivity continue into late childhood.

The effects of musical training have been shown to impact auditory processing in the brainstem as well.”

Let’s say that a researcher wanted – as one cited study did – to examine absolute pitch, a rare trait, present in a subset of synesthetes – music-color, another rare trait. The study as designed would probably be underpowered due to an insufficient number of subjects, and it would subsequently find “very little effect.”

Let’s say another researcher focused on brain areas in the cerebrum, and like the eight cited studies, ignored the nuclei in the pons part of the brainstem which are the first brain recipients of sound and equilibrium information from the inner ear via the eighth cranial nerve. Like those studies, the researcher was also biased against including limbic brain areas that would indicate “a strong emotional response.” A study design that combined leaving out important brain-area participants in the synesthesia process with a few number of synesthetes would be unlikely to find conclusive evidence.

The reviewer viewed the lack of evidence from “eight neuroimaging studies” as indicating something about the “perceptual nature of music-colour synaesthesia.” An alternative view is that the “inconclusive” evidence had more to do with study designs that:

  • Had a small number of subjects;
  • Omitted brain areas relevant to the music-color synesthesia process;
  • Didn’t investigate likely music-color synesthesia development periods; and
  • Didn’t investigate associations of music-color synesthesia with epigenetic states.

Consider the magnitude of omitting the thalamus from synesthesia studies as one “perceptual nature” example. Just the background information of Thalamus gating and control of the limbic system and cerebrum is a form of memory indicated its relevance to synesthesia:

Despite the fundamental differences between visual, auditory and somatosensory signals, the basic layouts of the thalamocortical systems for each modality are quite similar.

For a given stimulus, the output neural response will not be static, but will depend on recent stimulus and response history.

Sensory signals en route to the cortex undergo profound signal transformations in the thalamus. A key thalamic transformation is sensory adaptation in which neural output adjusts to the statistics and dynamics of past stimuli.”

One of this study’s researchers described ways that an individual’s “stimulus and response history” became unconscious memories with the thalamus. Including the thalamus in synesthesia studies may also have findings that involve reliving or re-experiencing a memory, possibly an emotional memory.

In such future research, it could be a design element to ask synesthetes before and after the experiment to identify feelings and memories accompanying synesthesia experiences.

It shouldn’t be a requirement, however, to insist that memories and emotions be consciously identified in order to be included in the findings. Human studies, for example, Unconscious stimuli have a pervasive effect on our brain function and behavior have found:

“Pain responses can be shaped by learning that takes place outside conscious awareness.

Our results support the notion that nonconscious stimuli have a pervasive effect on human brain function and behavior and may affect learning of complex cognitive processes such as psychologically mediated analgesic and hyperalgesic responses.”


Does an orangy twilight of aging sunflowers help you feel?

https://www.sciencedirect.com/science/article/pii/S1053810017305883 “Music-colour synaesthesia: Concept, context and qualia” (not freely available)

A flying human tethered to a monkey

Ponder this drone photo of “a flying human tethered to a monkey” ground drawing made over 1,000 years ago as reported by National Geographic and excerpted by the Daily Star:
Flying human tethered to a monkey


Aren’t the geoglyph and its description pretty good expressions of our evolved condition? Especially since it’s the interpretation of people who lived more a millennium ago?

With so many information sources freely available now, one couldn’t successfully argue that they understood the world better than we do, though. The price paid for figuring things out today is our “flying human” time and efforts, without which we’re as ignorant as our “monkey.”

A few aspects of the current comprehension of the differences between our two pictured primates are in Genetic imprinting, sleep, and parent-offspring conflict:

“I remain skeptical of a tendency to ascribe most modern woes to incongruence between our evolved nature and western cultural practices. We did not evolve to be happy or healthy but to leave genetic descendants, and an undue emphasis on mismatch risks conflating health and fitness [genetic rather than physical fitness].”

Our “flying human” can make happiness and health choices that our “monkey” can’t:

Our genetic adaptations often try to fool us into doing things that enhance fitness at costs to our happiness.

Our genes do not care about us and we should have no compunction about fooling them to deliver benefits without serving their ends.

Contraception, to take one obvious example, allows those who choose childlessness to enjoy the pleasures of sexual activity without the fitness-enhancing risk of conception.”

Other aspects of each of our two pictured primates’ differences are illuminated in a reference to A study of DNA methylation and age:

“Aging is not and cannot be programmed. Instead, aging is a continuation of developmental growth, driven by genetic pathways.

Genetic programs determine developmental growth and the onset of reproduction. When these programs are completed, they are not switched off.

Aging has no purpose (neither for individuals nor for group), no intention. Nature does not select for quasi-programs. It selects for robust developmental growth.”

The epigenetic clock theory of aging cited the same author, and modified his point to say:

“The proposed epigenetic clock theory of ageing views biological ageing as an unintended consequence of both developmental programmes and maintenance programmes.”

Finally, our “flying human” can make choices that aren’t available to our “monkey” concerning the structure, direction, and duration of our one precious life:

“What are you doing to reverse epigenetic processes and realize what you want? Do you have ideas and/or behaviors that interfere with taking constructive actions to change your phenotype?”

What are the chances?

This 2018 UC Davis anthropology study was on dice changes over two centuries:

“In Roman times, many dice were visibly lopsided..It did not matter what the objects were made of (metal, clay, bone, antler and ivory), or whether they were precisely symmetrical or consistent in size or shape, because, like the weather, rolls were predetermined by gods or other supernatural elements.

Dice, like many material objects, reflect a lot about people’s changing worldviews, Eerkens said. In this case, we believe it follows changing ideas about chance and fate.”


Think of a significant event in your life. Was it brought about by:

  • Fate?
  • Karma, divine intervention?
  • A prayer, belief, placebo-effect process?
  • Randomness?
  • A coin-flip, card-draw, dice-roll decision process?
  • A weighted-probability decision process?
  • Chosen behavior, thoughts, and feelings?
  • Unconscious behavior, thoughts, and feelings?
  • Culturally-guided motivations?
  • Non-arbitrary influences of other parties?

Which one or more of these factors would you now prefer to have been involved?

https://www.ucdavis.edu/news/it-not-how-you-play-game-how-dice-were-made “It’s Not How You Play the Game, but How the Dice Were Made”

Your need to feel important will run your life, and you’ll never feel satisfied

Yesterday’s team meeting at work provided one display after another of a person’s need to feel important. These eye-openers were the reason the scheduled 30-minute meeting lasted 45 minutes.

Although half of the forty or so attendees are under the age of 40, curiously, only two of them spoke during the meeting. I wasn’t among the older people who had something to say.

Not that I wasn’t tempted by the team-building exercise with its Skittles prompts:

  • Red – Tell us something you do well
  • Orange – Tell us something about your childhood
  • Purple – What could you live without?
  • Yellow – What couldn’t you live without?

Participation in the exercise was voluntary. Yes, I drew an orange Skittle.

Everyone knew there wasn’t enough time for each of us to speak and have the exercise become team-building, yet a dozen people piped up. Every one of the self-selected responses could have been prefaced with “I’m important because..”



There are many needs a person develops and tries to satisfy as substitutes for real needs that weren’t fulfilled. In this blog I’ve focused on the need to feel important.

I started with How do we assess “importance” in our lives? An example from scientists’ research choices and highlighted it on my Welcome page:

“Do you agree that an individual’s need to feel important is NOT a basic human need on the same level as nourishment, protection, and socialization? How does this need arise in our lives?”

I supported an explanation of the need to feel important with evidence and arguments on my Scientific evidence page and said:

“If the explanation is true yet someone rejected it, they at least wouldn’t have suffered from exposure to it. They’ll just remain in our world’s default mode of existence:

  1. Unaware of their own unconscious act-outs to feel important;
  2. Unaware of what’s driving such personal behavior; and
  3. Uninformed of other people’s behavioral origins as a consequence of 1 and 2.”

Other examples of substitute needs include:

What do you think? Any arguments for or against interrupting people’s default mode of existence?

Science and technology hijacked by woo

I’m an avid reader of science articles, abstracts, studies, and reviews. I tried a free subscription to Singularity Hub for a few weeks last month because it seemed to be a suitable source of articles on both science and technology.

I unsubscribed after being disappointed by aspects of science and technology hijacked almost on a daily basis into the realm of woo. Discovering scientific truths and realizing technologies is inspiring enough to stand on its own. It’s sufficiently interesting to publish well-written articles on the process and results.

I was dismayed that the website didn’t host a feedback mechanism for the authors’ articles. We shield ourselves from information incongruent with our beliefs. It’s a problem when a publisher of science and technology articles similarly disallows non-confirming evidence as a matter of policy.

An article may or may not advance knowledge of the subject, and Singularity Hub enables author hubris in presenting their views as the final word on the subject. Directing readers elsewhere for discussion is self-defeating in that every publisher’s goals include keeping visitors on their website as long as possible.

Here’s my feedback on two articles that inappropriately bent reality.


Regarding What Is It That Makes Humans Unique?:

“This trait [symbolic abstract thinking] not only gives us the ability to communicate symbolically, it also allows us to think symbolically, by allowing us to represent all kinds of symbols (including physical and social relationships) in our minds, independent of their presence in the physical world. As a result, internal associations of novel kinds become possible.”

Why limit discussion of our capability for symbolic representations? Other features to explore are:

  1. Aren’t beliefs also products of symbolic abstract thinking?
  2. What attributes of human behavior provide evidence for hopes and beliefs as symbolic representations?
  3. What’s the evolved functional significance that benefits humans of using symbolic abstract thinking to develop hopes and beliefs?

“Our revolutionary traits stand out even more when we take a cosmic perspective..We are not only in the universe, but the universe is also within us..Our brains, as an extension of the universe, are now being used to understand themselves.”

This article should be written well enough to inspire without resorting to unevidenced assertions about revolutions, the cosmos, and the timing of brain functionality.

“Some of us possess higher consciousness than others. The question that we now have to ask ourselves is, how do we cultivate higher consciousness, structural building, and symbolic abstract thinking among the masses?”

What’s the purpose of steering an evolution topic into elitism?


How a Machine That Can Make Anything Would Change Everything received >53,000 views compared with <5,000 views of the above article. This was an indicator that readers of Singularity Hub are relatively more interested in the possible implications of future technology than those of our past biological evolution. Why?

“If nanofabricators are ever built, the systems and structure of the world as we know them were built to solve a problem that will no longer exist.”

We are to believe that we’ll soon have the worldwide solution to problems in food supply, energy supply, medicine availability, income, knowledge – all that’s needed for survival? Should we develop hopes that technology will be our all-providing savior? Hope sells, without a doubt, but why would Singularity Hub mix that in with science?

This article reminded me of the chip-in-the-brain article referenced in Differing approaches to a life wasted on beliefs. Both articles seemingly appealed to future prospects, but the hope aspect showed that the appeals were actually reactions to the past.

If we individually address the impacts of past threats to survival – that include beliefs about future survival – each of us can break out of these self-reinforcing, life-wasting loops. Otherwise, an individual’s thoughts, feelings, and behavior are stuck in reacting to their history, with hopes and beliefs being among the many symptoms.

“Human history will be forever divided in two. We may well be living in the Dark Age before this great dawn. Or it may never happen. But James Burke, just as he did over forty years ago, has faith.”

Is it inspiring that the person mentioned has had a forty-year career of selling beliefs in technology?

Yes, future technologies have promise. Authors can write articles that provide developments without soiling the promise with woo.


This post has somehow become a target for spammers, and I’ve disabled comments. Readers can comment on other posts and indicate that they want their comment to apply here, and I’ll re-enable comments.

Review of The Honest Truth About Dishonesty: How We Lie to Everyone–Especially Ourselves

Here’s an Amazon book review I wrote six years ago when I regularly read 2-3 books a week while on the train to and from work. The book served as an example of how behavioral researchers couldn’t reach their stated goals by using standard scientific methods.

Review of The Honest Truth About Dishonesty: How We Lie to Everyone–Especially Ourselves by Dan Ariely

Everybody would benefit from reading this collection of experiments with human behavior.

It would be fair to compare the book’s accomplishments with its declared goals. The author stated the book’s primary goal early on when he wrote:

“We need to first figure out what forces really cause people to cheat and then apply this improved understanding to curb dishonesty. That’s exactly what this book is about.

Once we more clearly understand the forces that really drive us, we discover that we are not helpless in the face of our human follies (dishonesty included), that we can restructure our environment, and that by doing so we can achieve better behaviors and outcomes.”

I appreciated the author’s research that described and delineated what his experiments chose to observe. For example, in one series of experiments, people lied in order to get tokens that a few seconds later were exchanged into money. These subjects cheated to an extent that was almost twice the amount of people who lied in order to directly get money.

Another series of experiments showed that when people were tired or stressed, they were more likely to cheat. The amount that mentally exhausted subjects cheated was almost three times the amount of non-stressed subjects.

There was also a series of experiments that tested the “what the hell” effect. The researchers found that the amount of cheating was not linear. A point was frequently reached where the subjects apparently decided to abandon a little bit of cheating, and started to cheat at every opportunity.

The author proposed that a “fake it until you make it” approach doesn’t ultimately lead to honest behavior. He suggested that it would probably start a chain of events that proceeded through the “what the hell” context, where a little bit of cheating became a lot, and ended up with suffering when the truth was eventually revealed.


What these experiments examined wasn’t the origins of dishonest behavior, but rather the middle and ending parts of dishonest behaviors. As such, I didn’t see how the book’s primary goal could be achieved.

Without exploring the precedents to dishonest behavior, we’re also left with a patchwork approach to achieving the secondary goal of changing outcomes by influencing the salient aspects of behavior.

Understanding that I’m not an expert or a researcher, let me offer an approach that could be more conducive to achieving the primary and secondary goals of the book. The necessary but unexplored research area would be along the lines of “What do I feel just before I act dishonestly?”

The subjects’ probable answers to this unasked question would indicate that the person’s unfulfilled needs were in play. These needs are for the most part unconscious, and are the sources of automatic behavior that seeks to fulfill these needs. The outward manifestations of this automatic behavior will lead the subjects to symbolic fulfillment of their old needs.

The subjects in the experiments may not be able to make the connection between their behaviors of say, cheating on a pledge to quit smoking, and their driving forces. This is probably because the subjects weren’t consciously aware of the feelings they had just before they acted.

The researchers may be able to bridge this gap with information obtained from measurements done by fMRIs and other instruments. They can integrate these measurements with the subjects’ reports of their feelings.

To meet the goals of the book, it’s important that the researchers uncover the subjects’ underlying feelings. This is necessary because feelings are usually closer to the causes of a person’s behavior.

The subjects’ behaviors were symptoms of their problems, not the problems themselves. The researchers would be better served to study the entire situation as best they can.


All of us anticipate while we read a book that there will be prescriptions and answers to the circumstances and troubles presented. But because The (Honest) Truth About Dishonesty didn’t identify “what forces really cause people to cheat,” the primary goal, to “clearly understand the forces that really drive us” wasn’t attained.

Realization of the secondary goal is undecided. The author presented several examples of how environments affect people’s dishonesty, such as conflicts of interests. He showed how people’s rationalizations allow them to permit a level of dishonesty that doesn’t harm their ideas about their own morality.

But how can effective and enduring solutions arise “so we can achieve better behaviors and outcomes” when the roots of the behaviors aren’t examined?