Broccoli sprouts activate the AMPK pathway

I’ll curate this 2020 rodent study through its summary graphic and caption:

“Type 2 diabetes exhibits elevated levels of circulating fatty acids and CD36. This results in excessive fatty acids binding with CD36 to suppress AMPK [adenosine 5′ monophosphate-activated protein kinase, a key player in regulating energy metabolism].

Inactivation of AMPK breaks homeostasis in lipid metabolism and the antioxidative system, and subsequently induces cardiac oxidative stress, inflammation, and fibrosis. These damages contribute to diabetic cardiomyopathy.

SFN [sulforaphane] treatment significantly induces AMPK activation, which:

  • Enhances mitochondrial fatty acids oxidation via PPARα/CPT-1B and PGC1-α pathways; and
  • Inhibits SCD-1 to down-regulate lipid synthesis.

This greatly alleviates cardiac lipid accumulation.

NRF2-mediated antioxidative effects can be activated via AMPK/AKT/GSK3β pathway, developing another pathway to confront cardiac oxidative damage.

AMPK is indispensable in SFN-mediated cardiac prevention against T2D.”

https://www.metabolismjournal.com/article/S0026-0495(19)30217-3/fulltext “Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function” (not freely available)


1. A human-mouse relative age perspective:

  • Experiments started with subjects at 2-months-old, equivalent to 20 human years. Treatment subjects ate a high-fat diet.
  • Sulforaphane was injected subcutaneously at 0.5 mg/kg every working day. It didn’t have significant effects on cardiac lipid accumulation at 5 months (a 30-year-old human), but did at 8 months (a 42-year-old human).

2. This study demonstrated that for sulforaphane to produce evidenced Nrf2 pathway effects, it first activated the AMPK/AKT/GSK3β pathway. For 5 days a week, over periods of human-equivalent decades.

3. CPT-1B pictured above is carnitine palmitoyltransferase-1B, an enzyme in the outer membrane of mitochondria. It controls transfer of long-chain fatty acyl CoA into mitochondria to convert fat into energy.

AMPK pathway activation also subsequently activates “PPARα/CPT-1B and PGC1-α pathways.” See A case for carnitine supplementation for a review.


Can a prebiotic help you feel better?

This 2019 rodent study investigated an inulin-type fructo-oligosaccharide (FOS):

“The microbiota-gut-brain axis was used to investigate anti-depressive properties of FOS at the interface of gut microbiota. FOS was introduced via gavage to rats exposed to chronic unpredictable mild stress:

  • FOS alleviated depression-like behaviors and repaired intestinal epithelia damages.
  • FOS treatment lowered corticosterone level.
  • FOS-induced modulation of gut microbiota was more anti-depressive compared to fluoxetine, the standard antidepressant drug.

  • N-Ctrl and M-Ctrl were normal and model control groups which received only water.
  • N-FOS and M-FOS were normal and model rats administrated FOS (50 mg/kg) [human equivalent (50 mg x .162) x 70 kg = 567 mg].
  • M-Flx and M-DP5 rats were model rats given fluoxetine hydrochloride (10 mg/kg) and DP5 compound of FOS (15 mg/kg).

Villi structure was broken for rats in a depression-like state. Mucosal erosion was increased, and the crypt in the small intestinal epithelium was disrupted. Treatment with FOS, DP5 and fluoxetine relieved this damage.

However, a severe side effect was found in the colon of rats that demonstrated apposition to fluoxetine:

  • There was obvious goblet cell loss and inflammatory cells infiltration in the colonic epithelium of fluoxetine treated rats, which showed more severity than in model control rats. Although fluoxetine has high bioavailability, its irritation to gastrointestinal tract may cause inflammation reaction thus lead to colonic destruction.
  • These pathological changes in the intestine were investigated to compare the influence of stress and possible drug irritation to the gastrointestinal tract. Stress had negatively affected microstructure of the small intestine.

Anti-depressant efficacy of FOS was inseparable from and strongly associated with modulation of the host’s gut microbiota.”

https://www.sciencedirect.com/science/article/abs/pii/S0944711319304738 “Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model” (not freely available)


Forcing people to learn helplessness explored human equivalents of this study’s chronic, unpredictable stress experiments. Related phenotypes and symptoms in humans and animals include:

  • “Social defeat
  • Social avoidance behavior
  • Irritable bowel syndrome
  • Depression
  • Anxiety
  • Anhedonia
  • Increased hypothalamic-pituitary-adrenal (HPA)-axis sensitivity
  • Visceral hypersensitivity.”

These researchers spent a lot of time and effort comparing microbiota categories. The point for people, though, is how we feel.

PXL_20210122_122029867

Gut microbiota and aging

This 2020 review explored the title subject:

“The human body contains 1013 human cells and 1014 commensal microbiota. Gut microbiota play vital roles in human development, physiology, immunity, and nutrition.

Human lifespan was thought to be determined by the combined influence of genetic, epigenetic, and environmental factors including lifestyle-associated factors such as exercise or diet. The role of symbiotic microorganisms has been ignored.

Age-associated alterations in composition, diversity, and functional features of gut microbiota are closely correlated with an age-related decline in immune system functioning (immunosenescence) and low-grade chronic inflammation (inflammaging). Immunosenescence and inflammaging do not have a unidirectional relationship. They exist in a mutually maintained state where immunosenescence is induced by inflammaging and vice versa.

Immunosenescence changes result in both quantitative and qualitative modifications of specific cellular subpopulations such as T cells, macrophages and natural killer cells as opposed to a global deterioration of the immune system. Neutrophils and macrophages from aged hosts are less active with diminished phagocytosing capability.

Gut microbiota transform environmental signals and dietary molecules into signaling metabolites to communicate with different organs and tissues in the host, mediating inflammation. Gut microbiota modulations via dietary or probiotics are useful anti-inflammaging and immunosenescence interventions.

The presence of microbiomic clocks in the human body makes noninvasive, accurate lifespan prediction possible. Prior to occurrence of aging-related diseases [shown above], bidirectional interactions between the gut and extraenteric tissue will change.

Correction of accelerated aging-associated gut dysbiosis is beneficial, suggesting a link between aging and gut microbiota that provides a rationale for microbiota-targeted interventions against age-related diseases. However, it is still unclear whether gut microbiota alterations are the cause or consequence of aging, and when and how to modulate gut microbiota to have anti-aging effects remain to be determined.”

https://www.tandfonline.com/doi/abs/10.1080/10408398.2020.1867054 “Gut microbiota and aging” (not freely available; thanks to Dr. Zongxin Ling for providing a copy)


1. The “Stable phase” predecessor to this review’s subject deserved its own paper:

“After initial exposure and critical transitional windows within 3 years after birth, it is generally agreed that human gut microbiota develops into the typical adult structure and composition that is relatively stable in adults.

gut microbiota by age phenotype

However, the Human Microbiome Project revealed that various factors such as food modernization, vaccines, antibiotics, and taking extreme hygiene measures will reduce human exposure to microbial symbionts and led to shrinkage of the core microbiome, while the reduction in microbiome biodiversity can compromise the human immune system and predispose individuals to several modern diseases.”

2. I looked for the ten germ-free references in the “How germ-free animals help elucidate the mechanisms” section of The gut microbiome: its role in brain health in this review, but didn’t find them cited. Likewise, the five germ-free references in this review weren’t cited in that paper. Good to see a variety of relevant research.

There were a few overlapping research groups with this review’s “Gut-brain axis aging” section, although it covered only AD and PD research.

3. Inflammaging is well-documented, but is chronic inflammation a condition of chronological age?

A twenty-something today who ate highly-processed food all their life could have gut microbiota roughly equivalent to their great-great grandparents’ at advanced ages. Except their ancestors’ conditions may have been byproducts of “an unintended consequence of both developmental programmes and maintenance programmes.

Would gut microbiota be a measure of such a twenty-something’s biological age? Do we wait until they’re 60, and explain their conditions by demographics? What could they do to reset themself back to a chronological-age-appropriate phenotype?


Eat heat-killed bacteria for health?

Two human studies investigated health effects of heat-killed lactic acid bacteria. The first from 2019 found:

“One hundred healthy subjects with a body mass index from 23.0 to 29.9 (51 men and 49 women, mean age 41.4 years) were enrolled in this randomized, double-blind, placebo-controlled, parallel group study. Subjects were randomly assigned to daily administration of a tablet containing heat-killed Lactobacillus plantarum L-137 (HK L-137) (10 mg) or a placebo tablet for 12 weeks. This study was conducted at Higashi Koganei Sakura Clinic (Tokyo, Japan) from December 2017 to March 2018.

HK L-137 improved TC and LDL-C levels, especially in subjects with high serum CRP, an indicator of total inflammation. Seasonal increases in levels of TC and LDL-C were observed in the control group, but not in the HK L-137 group, resulting in significant differences between groups at 12 weeks.

HK L-137 decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) biomarkers of hepatic inflammation. Daily intake of HK L-137 enhanced T-cell responses and suppressed hepatic inflammation and serum cholesterol in overweight subjects.”

https://link.springer.com/article/10.1007%2Fs00394-019-02112-3 “Daily intake of heat-killed Lactobacillus plantarum L-137 improves inflammation and lipid metabolism in overweight healthy adults: a randomized-controlled trial”

Four individuals in both the control and treatment groups – 8% – came down with influenza during the 12-week trial period.


Researchers of a 2020 study cited their previous work in mouse models and in a preliminary clinical study. Let’s start with their comment on the first study:

“Reduction in high-sensitivity C-reactive protein (hsCRP) or pro-inflammatory cytokines, the most important biomarkers of systemic chronic inflammation, was not found.

We selected Lactobacillus plantarum OLL2712 as an optimal anti-inflammatory LAB strain among hundreds in our LAB library. Administration of heat-treated OLL2712 cells alleviated chronic inflammation by suppressing pro-inflammatory cytokine levels in visceral adipose tissue and the serum and improved hyperglycemia in mouse models with obesity and diabetes.

In the present study, we conducted a randomized, double-blind, placebo-controlled, parallel-group trial to examine whether the 12-week ingestion of a test yogurt containing heat-treated OLL2712 cells is effective in improving glucose metabolism-related parameters in human prediabetic participants. Prediabetic adults (n = 130, age range: 20–64 years) were randomly assigned to either the placebo or OLL2712 groups (n = 65 each) and were administered conventional yogurt or yogurt containing more than 5 × 109 heat-treated OLL2712 cells, respectively, daily for 12 weeks in Minato-ku, Tokyo, Japan between July and December 2018.

HbA1c levels were significantly reduced in both groups at week 12 compared to baseline. 12-week reduction of HbA1c levels was significantly greater in the OLL2712 group.

Fasting blood glucose (FBG) levels did not change significantly in both groups. Fasting insulin levels were significantly increased in both groups compared to baseline due to seasonal fluctuations from summer to winter. However, they continued to increase consistently throughout the study only in the placebo group.

Increased chronic inflammation marker levels and insulin-resistant index (HOMA-IR) levels were higher at week 12 than at baseline in the placebo group but not in the OLL2712 group. HOMA-IR = fasting glucose (mg/dL) × fasting insulin (μU/mL)/405.

Overall, the only significant difference between groups was found for HbA1c levels. Effect size was very small compared to that of clinical trials of antidiabetic medication that target patients with severe diabetes.

Placebo yogurt used in this study contained some effective ingredients including more than 1011 cells of Lactobacillus bulgaricus and Streptococcus thermophilus, which might provide glycemic improvement and might affect benefits of OLL2712 cells.

Postprandial glucose excursions contribute more to HbA1c in participants with lower FBG levels. Ingestion of OLL2712 cells might reduce HbA1c levels in participants with lower FBG levels by suppressing postprandial glucose excursions.”

https://www.mdpi.com/2072-6643/12/2/374/htm “Effects of 12-Week Ingestion of Yogurt Containing Lactobacillus plantarum OLL2712 on Glucose Metabolism and Chronic Inflammation in Prediabetic Adults: A Randomized Placebo-Controlled Trial”

The placebo group’s Day 0 fiber part of their diet was 3% (11.0 / (11.0 + 232 + 62.6 + 69)). The treatment group was also 3%.


People are eating highly-processed food if fiber is only 3% of their diet. Can effects from other gut microbiota interventions be expected when basic soluble fiber requirements aren’t met?

Also, humans have 1014 gut microbiota. They outnumber the second study’s treatment “5 × 109 heat-treated OLL2712 cells” by 20,000 to one, and its placebo group by 1,000 to one. Could either group reach effective levels?

I’m not overweight or prediabetic, don’t have metabolic syndrome or diabetes. Like Day 70 results from Changing to a youthful phenotype with broccoli sprouts, it’s hard to make personal comparisons to populations represented by these two trials.

I eat less than half the fat, and several times more than the fiber shown above. If I took heat-killed lactic acid bacteria, would it have any measurable effects?

How will you feel?

Consider this a partial repost of Moral Fiber:

“We are all self-reproducing bioreactors. We provide an environment for trillions of microbes, most of which cannot survive for long without the food, shelter and a place to breed that we provide.

They inhabit us so thoroughly that not a single tissue in our body is sterile. Our microbiome affects our development, character, mood and health, and we affect it via our diet, medications and mood states.

The microbiome:

  • Affects our thinking and our mood;
  • Influences how we develop;
  • Molds our personalities;
  • Our sociability;
  • Our responses to fear and pain;
  • Our proneness to brain disease; and
  • May be as or more important in these respects than our genetic makeup.

Dysbiosis has become prevalent due to removal of prebiotic fibers from today’s ultra-processed foods. I believe that dietary shift has created a generation of humans less able to sustain or receive love.

They suffer from reduced motivation and lower impulse control. They are more anxious, more depressed, more selfish, more polarized, and therefore more susceptible to the corrosive politics of identity.


Other recent blog posts by Dr. Paul Clayton and team include Skin in The Game and Kenosha Kids.

Image from Thomas Cole : The Consummation, The Course of the Empire (1836) Canvas Gallery Wrapped Giclee Wall Art Print (D4060)

Part 2 of Eat broccoli sprouts for DIM

Continuing Part 1 with three DIM studies, the first of which was a 2020 chemical analysis investigating:

“Anti-estrogenic, anti-androgenic, and aryl hydrocarbon receptor (AhR) agonistic activities of indole-3-carbinol (I3C) acid condensation products.

I3C is a breakdown product [isothiocyanate] of glucobrassicin. Most biological activities attributed to I3C are believed to result from its acid condensation products, as it is expected that after ingestion of cruciferous vegetables, I3C is completely converted in the stomach before it reaches the intestine.

The reaction mixture was prepared from I3C under acidic conditions. Based on the various HPLC peaks, 9 fractions were collected and tested.

DIM (3,3-diindolylmethane) displayed clear estrogenic activity, showing an additive effect when co-exposed with low concentrations of E2 [estradiol] (below EC50) [effective concentration that gives half-maximal-response of a biological pathway]. However, an anti-estrogenic activity was observed when DIM was co-exposed with higher concentrations of E2, i.e. above EC50. None of the nine fractions was able to inhibit response of E2.

I3C and DIM showed clear anti-androgenic activities when co-exposed with concentrations of T [testosterone] at EC50 or ECmax. DIM showed a relatively strong antagonistic activity, and was able to completely inhibit response of T.

All fractions displayed an AhR agonist activity. Poor activity of fraction 3 seems surprising, as it contains ICZ, which was shown to be a strong AhR agonist. This is a strong indication that ICZ is only present at a very low concentration.

Observed estrogenic and anti-androgenic effects of the reaction mixture are most likely due to DIM.

The present study is the first that demonstrates that DIM also possesses anti-estrogenic properties when co-administered with E2 concentrations above EC50. Rather than ICZ, LTr1 and several other compounds present in fractions 1 and 4 (CTr), and larger molecules present in fractions 7, 8 (LTe1) and 9 seem responsible for observed AhR activity of the reaction mixture.”

https://www.sciencedirect.com/science/article/pii/S1878535220302811 “Acid condensation products of indole-3-carbinol and their in-vitro (anti)estrogenic, (anti)androgenic and aryl hydrocarbon receptor activities”

I came across this study as a result of its citation in Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis.


A second 2016 study was with humans:

“Forty-five subjects consumed vegetables, a mixture of brussels sprouts and/or cabbage, at one of seven discrete dose levels of glucobrassicin ranging from 25 to 500 μmol, once daily for 2 consecutive days.

‘Blue Dynasty’ cabbage contained 33.5 ± 4.0 μmol glucobrassicin per 100 grams food weight. ‘Jade Cross’ brussels sprouts contained 206.0 ± 12.9 μmol per 100 grams.

At 50 μmol, variability in 24-hour urinary DIM levels appears to stem from both within an individual and between individuals. At 200 and 500 μmol dose levels, most variability is coming from between individuals rather than within an individual.

Inter-individual DIM variability may reflect the relative benefit an individual derives from consuming glucobrassicin from vegetables, responsive not only to how much glucobrassicin was consumed but also to variations in I3C uptake and DIM metabolism, many of which are not characterized.

Dose curve between glucobrassicin dose (25–500 μmol) [25, 50, 100, 200, 300, 400, 500] and urinary DIM. Bars represent SD. Estimated parameters in the original scale (95% CI): Maximum DIM 421.5 pmol/mL (154.7–1,148.4), minimum DIM 5.4 pmol/mL (0.7–44.3), EC50 90.2 μmol (29.1–151.3).

We conclude that urinary DIM is a reliable biomarker of glucobrassicin exposure and I3C uptake and that feeding glucobrassicin beyond 200 μmol did not consistently lead to more urinary DIM. Our data support the notion that cancer-preventive properties that might be derived from cruciferous vegetable consumption may require neither a large quantity of vegetables nor high-dose supplements.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220883/ “Harnessing the Power of Cruciferous Vegetables: Developing a Biomarker for Brassica Vegetable Consumption Using Urinary 3,3′-Diindolylmethane”


1. Most subjects had trouble eating 500 μmol / 242.72 grams of Jade Cross brussels sprouts:

“At the 500 μmol dose level, two subjects could not finish due to the taste of the raw Brussels sprouts and were reassigned to 50 μmol dose level.

Two of the remaining five subjects at the 500 μmol dose level “Did not eat all of the assigned vegetables.” 🙂 That amount of brussels sprouts may have made two more sick because one “Missed one void during 2–6 hour collection period” and another “Missed 2 voids during the 6–12 hour collection period.”

2. From its supplementary material, there were ten subjects who ate a 200 μmol glucobrassicin dose. That’s a lot of raw cabbage (179.10 g) and brussels sprouts (67.96 g).

  • On Day 1 at the 2-6 hour point, Subject 27’s urinary DIM measured 10.21 pmol/mL and Subject 20’s measured 991.88, > 9700% higher.
  • At that 2-6 hour point on Day 2, the same subjects measured 16.15 and 687.44 pmol/mL, > 4200% higher.
  • From Table 1, their respective Mean 24-h DIM ± SE, pmol/mL measurements were 20.7 ± 4.0 and 1105 ± 45, > 5300% higher.

The 100 μmol glucobrassicin dose was 149.25 g Blue Dynasty cabbage and 24.27 g Jade Cross brussels sprouts. Could you eat that every day?

3. There’s sufficient data to make individual DIM bioavailability calculations. Don’t know why this study didn’t do that, nor did any of its 18 citing papers.

One study came close for broccoli and radish sprouts, 2017’s Bioavailability and new biomarkers of cruciferous sprouts consumption (not freely available) by researchers in the same group as Our model clinical trial for Changing to a youthful phenotype with broccoli sprouts. They didn’t disclose and analyze individual DIM bioavailability evidence, though:

“Broccoli and radish sprouts content in GB [glucobrassicin] were ~11.4 and ~7.7 μmol/20 g F.W, respectively. After ingestion of broccoli sprouts, 49% of GB was suitably metabolised and excreted as hydrolysis metabolites, calculated as the sum of I3C and DIM (~5.57 μmol /24 h). Following radish ingestion, the percentage of GB hydrolysed and absorbed was 38% (~2.92 μmol /24 h).

These results of bioavailability contrast with the extremely low percentage (< 1%) of GB excreted as DIM after consumption of Brussels sprouts and cabbage in a previous study (Fujioka, et al., 2014). Further studies about conversion of other indole GLS [glucosinolates] to I3C and DIM are needed to know more about bioavailability of these compounds, as there is no information in literature.”


A ten-subject study in Microwave broccoli seeds to create sulforaphane found inter-individual variability of sulforaphane and its metabolites in blood plasma for the highest and lowest individuals was > 500% (2.032 / 0.359 μmol). The urinary % of dose excreted by the same subjects was > 400% higher (86.9% and 19.5%, respectively.)

These studies present an opportunity for further discovery:

  1. Which researchers will try to understand causal experiences in people’s lives that produced such effects?
  2. Which researchers will produce evidence for factors that make people responsively either alive or dead to external influences on their internal environment?
  3. Where are studies that show when an individual needs to change their responses – their phenotype – they can successfully do so?

Herding, the story of 2020

Part 2 of Sprouting hulled oats

In Sprouting hulled oats, seeds were sprouted at 21°C (70°F) for 3 days. That post ended with a question raised by Oat sprouts analysis regarding desirability of enzymes.

Here’s that study’s analysis of its hulled oat variety’s enzymes, excluding results not pertinent to this post. There was neither a 72-hour measurement period nor a 20°C 60-hour period analyzed. Interpolate measurements accordingly.

1. α-amylase enzyme was described as:

“Alpha-amylase plays a key role during germination since it catalyzes hydrolysis of α-1,4 glucosidic linkages of starch, yielding maltose and glucose necessary for seedling development. Activity of this enzyme increased considerably during oat sprouting [reference to Degree of oat sprouting] but it is also de novo synthesized during this process.

High glucose content in sprouted flour can increase its glycemic index (GI). Foods with low GI are beneficial due to low postprandial glucose response compared to foods with a high GI. Selection of germination conditions is crucial to modulate α-amylase activity in oat for obtaining healthier sprouted flours with lower GI.”

A. 3-day-old hulled oat sprouts probably don’t have “High glucose content.” Studies such as Optimization of Oat Amylase During Sprouting to Enhance Sugar Production found:

“Maltose was the primary sugar, though there was a detectable but smaller amount of glucose.”

B. I understand that researchers have adopted a glycemic index. Does that one dimension indexed on glucose at 100 adequately inform health-choice decisions about oat sprout α-amylase enzyme content?

What’s the point of indexing healthy choices like sprouted whole grains to unhealthy choices that healthy people aren’t going to make anyway?

2. Increased protease enzyme activity was analyzed as desirable, and used as an optimization parameter.

3. Lipase activity increased from 18°C 60-hour to 20°C 96-hour measurements in the above graphic. All sprouted oat lipase levels were below unsprouted control oat flour, however:

“Lipase activity decreased in sprouted var. Meeri flour during germination. Our results suggest that there must be an important lipase activity in oat hull.

Lipase hydrolyse triglicerides to free fatty acids that are prone to oxidation and cause rancidity of cereal flours. According to our results, use of dehulled oat grains is desirable to obtain sprouted oat flours with increased stability and longer shelf life.”


Don’t know which enzyme is responsible for mild throat burn after eating 3-day-old hulled oat sprouts. It isn’t unpleasant, just unexpected. Research so far indicates that people pay for catalytic enzymes that increase proteolytic and digestive activity.

What if we index health decisions on a standard at 100 of drinking a beer first thing in the morning? Would anything scaled by that one dimension inform fine tuning of health-choice decisions?

“Woke up this morning and I got myself a beer
The future’s uncertain and the end is always near”

A case for carnitine supplementation

This 2020 review subject was carnitine, acetyl-L-carnitine, and its other molecular forms:

“Carnitine is necessary to deliver long-chain fatty acids from cytosol into mitochondria. Carnitine homeostasis is maintained by diet and renal absorption, as only a small amount (about 25%) is obtained by endogenous biosynthesis.

Defective fatty acid oxidation occurs with reduced intracellular levels of carnitine, leading to glucose consumption instead of lipid consumption, resulting in hypoglycemia. Non-metabolized lipids accumulate in tissues such as heart, skeletal muscle, and liver, resulting in myopathy and hepatic steatosis.

2000 mg/day is unlikely to provoke unwanted side effects and is safe for humans. In-depth studies are needed to identify a unique method of analysis which can guarantee efficient monitoring of supplement active component amounts.”

https://www.mdpi.com/1420-3049/25/9/2127/htm “The Nutraceutical Value of Carnitine and Its Use in Dietary Supplements”


The review listed animal studies of L-carnitine alone and in combination with:

  • Vitamin D3;
  • Coenzyme Q10;
  • Nicotinamide riboside;
  • Selenium;
  • L-arginine;
  • Anti-histamine drugs cetirizine hydrochloride and chlorpheniramine maleate; and
  • Hypertension drug olmesartan.

Human studies of its effects included:

  • Muscle soreness, damage biomarkers, and cramps;
  • Osteoarthritis knee pain and inflammation markers;
  • Ischemic cerebrovascular injury;
  • Peripheral neuropathy;
  • Nonalcoholic fatty liver disease;
  • Insulin resistance and Type 2 diabetes;
  • Kidney diseases;
  • Inherited diseases phenylketonuria and maple syrup urine;
  • Stress, depression, and anxiety;
  • Male infertility; and
  • Hepatitis C.

Sprouting hulled oats

My Sprouting whole oats trial was a hassle with hulls and a poor germination rate. This week I used hulled oat seeds from a different vendor, and a different study, Degree of oat sprouting, as my model.

  • Oat variety of Avena sativa was a small seed, 7 mm x 2 mm. The model used “huskless oat ‘Gehl'” which is a different species (Avena nuda).
  • 100 seeds weighed 1.5 grams. There were over 1,300 seeds per 20 g batches.
  • Oat sprout batches were processed the same way I do broccoli sprout batches. A new batch started soaking to start germination every 12 hours, then was rinsed three times every 24 hours on a 6 hours – 6 hours – 12 hours cycle. I have an open question to the model’s corresponding coauthor to explain their “4.5‐hr wet steeping, 19‐hr air rest, and 4‐hr steeping, all at 20°C” procedures to start germination, since I didn’t have access to its cited study. The model grew oat sprouts for 1, 2, and 3 days.
  • Temperature in my kitchen was 21°C (70°F) because it’s winter outside. The model grew oat sprouts at 10, 14, 20, 25, and 30°C. Their findings included “Temperatures between 20° and 25°C yielded the most dramatic changes in properties of sprouted oats.”

I evaluated germination results per the model’s Degree of Sprouting finding:

“Length of the coleoptile [shoot] was selected as a criterion of categorization of degree of sprouting. Grains of degree 0 do not show any radicle [root] or coleoptile growth. Degree:

  1. Has visible embryos (small white point), while radicles and coleoptile are not visible;
  2. Shows a developed embryo emerging from the seed coat;
  3. Coleoptile lengths of at least half the oat grain length;
  4. Coleoptile lengths between half and a full grain length; and
  5. Coleoptile longer than a full grain length.”

Most of this trial wasn’t a big deal, adding just a few extra minutes onto what I do three times a day with broccoli sprouts. Here’s what this oat variety’s hulled seeds and 3-day-old sprouts looked like:

The tedious part was evaluating degrees of sprouting. I took as large a bottom-to-top sample as I could tolerate sorting (235 seeds / sprouts, about 17%), with these results:

A 97% germination rate. 🙂 Average weight of three 3-day-old batches was 51.9 grams, for a 260% weight gain. My 5-day-old whole oat sprouts trial had a 22% germination rate and a 221% weight gain.

The model’s Figure 3 Degree of Sprouting finding for 20°C and 25°C at 3 days was hard to read:

Don’t know how 0 degrees of sprouting at 20°C and 25°C > 1% reconciled with their statement “Germinability after 3 days was about 99% at all temperatures.” A numerical table wasn’t provided – yet another question for the corresponding author. Meanwhile, I’ll estimate:

Their hard-to-read Figure 3 also wasn’t completely congruent with their statement:

“Around 20% of grains sprouted at 20° and 25°C had a coleoptile longer than a full grain length (degree of sprouting 5).”


These oat sprouts taste milder than my previous trial’s. With more than a third at a degree-of-sprouting 5 measurement, they’re sweet, concurrent with the model’s findings that:

“Increased amounts of reducing sugars and ascorbic acid were found particularly in the radicles and coleoptile. Coleoptile and radicle growth (input parameters for the degree of sprouting) and reducing sugars and α‐amylase activity are interdependent.”

Corresponding increased enzyme concentrations produce an aftertaste, though. I eat them along with either food or drink.

Can eating three-day-old oat sprouts of this Montana cultivated variety help with what I’m already doing? Here’s what I expect, given the model was a different oat species, and the Sprouting oats and Oat sprouts analysis studies used different oat cultivars.

1. In order of magnitude: increased antioxidants, GABA, phenolic compounds, protein, amino acids, β-glucan, and polyunsaturated fatty acids. Don’t know about GABA and protein, but the others may help counter inflammation.

2. Increased enzyme intake. The model study used α-amylase as a marker for α-amylase enzymes (catalyze starches), protease enzymes (catalyze proteins), and lipase enzymes (catalyze fats).

Oat sprouts analysis characterized increased α-amylase and lipase activities as undesirable in a sprouted oat flour context. More on enzymes in Part 2 of Sprouting hulled oats.

Week 37 of Changing to a youthful phenotype with broccoli sprouts

1. Been wrong about a few things this past week:

A. I thought in Week 28 that extrapolating A rejuvenation therapy and sulforaphane results to humans would produce personal results by this week. An 8-day rat treatment period ≈ 258 human days, and 258 / 7 ≈ 37 weeks.

There are just too many unknowns to say why that didn’t happen. So I’ll patiently continue eating a clinically relevant 65.5 gram dose of microwaved broccoli sprouts twice every day.

PXL_20201015_105645362

The study’s lead researcher answered:

“Depends, it might take 37 weeks or more for some aspects of ‘youthening’ to become obvious. It might even take years for others.

Who really cares if you are growing younger every day?

For change at the epigenomic/cellular level to travel up the biological hierarchy from cells to organ systems seems to take time. But the process can be repeated indefinitely (so far as we know) so by the second rejuvenation you’re already starting at ‘young’. (That would be every eight to ten years I believe.)”

His framework is in An environmental signaling paradigm of aging.

B. I thought that adding 2% mustard seed powder to microwaved broccoli sprouts per Does sulforaphane reach the colon? would work. Maybe it would, maybe it wouldn’t, but my stomach and gut said that wasn’t for me.

C. I thought I could easily add Sprouting whole oats to my routine. I ran another trial Sprouting hulled oats using oat seeds from a different company and Degree of oat sprouting as a model.

2. Oat sprouts analysis paired studies were very informative, don’t you think? One study produced evidence over a range of germination parameters (hulled / dehulled seeds of two varieties, for 1-to-9 days, at 12-to-20°C). And evaluated what mix of germination parameters would simultaneously maximize four parameters (β-glucan, free phenolic compounds, protease activity and antioxidant capacity) while minimizing two (enzymes α-amylase and lipase). Then a follow-up study characterized oat seeds sprouted under these optimal conditions.

I doubted PubMed’s “oat sprout” 20 search results for research 1977 to the present. Don’t know why they didn’t pick up both of these 2020 studies, but I’m sure that .gov obvious hindrances to obtaining relevant information like this won’t be fixed. What other search terms won’t return adequate results?

3. The blog post readers viewed this week that I made even better was Do delusions have therapeutic value? from May 2019. Sometimes I’ve done good posts describing why papers are poorly researched.

4. I’ve often changed my Week 4 recipe for an AGE-less Chicken Vegetable Soup dinner (half) then the next day for lunch. The biggest change brought about by 33 weeks of behavioral contagion is that I now care more about whether vegetables are available than whether or not they’re organic. Coincidentally, I’ve developed a Costco addiction that may require intervention.

  • 1 lemon
  • 3 Roma tomatoes
  • 4 large carrots
  • 6 stalks organic celery
  • 6 mushrooms
  • 6 cloves garlic
  • 6 oz. organic chicken breast fillet
  • 1 cup organic pasta
  • 1 yellow squash, alternated with 1 zucchini
  • 1 cup sauvignon blanc
  • 32 oz. “unsalted” chicken broth, which still contains 24% of the sodium RDA

Pour wine into a 6-quart Instant Pot; cut and strain squeezed lemon; cut chicken into 1/4″ cubes and add; start mixture on Sauté. Wash and cut celery; wash and scrub carrots; stir pot at 4 minutes; stir in celery at 5 minutes.

Cut and stir in carrots. Wash mushrooms, slicing only if supersized. When pot boils around 10 minutes, add chicken broth and stir.

Wash and slice yellow squash / zucchini; crush and peel garlic but don’t slice. When pot boils again around 15 minutes, stir in pasta; turn off pot.

Add yellow squash / zucchini, mushrooms, garlic; wash and add whole tomatoes. Let set for 20 minutes; stir bottom-to-top 5 and 15 minutes after turning off, and again before serving.

AGE-less Chicken Vegetable Soup is tasty enough to not need seasoning, at least when freshly prepared.

Sprouting oats

Three 2020 studies investigated properties of sprouted oats. This first study compared one oat cultivar’s seed and sprout contents for phenolic compounds, and evaluated oat sprouts’ protection against developing colon cancer:

“The purpose of this investigation was to evaluate whether sprouted oats (SO) of the Turquesa variety still possessed effective physiologically bioactive compounds, i.e., phenolics, flavonoids, AVAs [avenanthramides], and phytosterols, and whether it exerted antioxidant and anti-inflammatory effects, as well as the capacity to improve relevant intestinal parameters, in an AOM [azoxymethane] / DSS [dextran sulfate sodium]-induced CRC [colorectal cancer] mouse model.

Suboptimal intake of whole grains (38 g/d) was associated with CRC burden across 16 European countries. An optimal intake of 50–100 g/d was considered in our study to establish the dose administered in the AOM/DSS-induced CRC mouse model (75 g/d).

Seeds (100 g) were soaked in distilled water for 12 h then watered daily. Temperature and relative humidity were set at 25 °C and 60%. Germination was performed in darkness for five days. Germination percentage was determined based on total number of fully emerged seedlings.

We reached 100% of germination and a radicle length of 6.47 ± 0.22 cm. Sprouts were dried at 50 °C for 12 h, milled to a particle size of 0.5 mm, and stored at 4 °C until analyses.

Protein and lipid contents were higher in SO, whereas carbohydrate and ash contents were lower. A more than four-fold increase [0.64 mg/g to 2.79 mg/g] in TPC [total phenolic compounds] was obtained after five days.

We identified AVA-D as the most abundant AVA, followed by AVA-L, which had not been reported as one of the three most abundant AVAs in other oat varieties. Of the three most abundant AVAs previously reported, only AVA-B had a higher abundance in germination.

Phytic acid, an antinutritional compound present in oats, was 10 times lower in oat sprouts. Phytic acid has its content decreased by 15%–35% during even a short three-day germination due to activation of phytase activity. Although high doses of phytic acid inhibit absorption of metals and minerals in humans, it has been observed that, in small doses, it can function as a protective factor in several chronic degenerative diseases.

Mice in groups 3 and 4 were gavaged every morning with phenolic-AVA extract (0.084 mg GAE) and 30 mg of SO, respectively. We observed a mild anti-inflammatory effect of SO and AVA treatments, and a reduced adenocarcinoma incidence of 52.5% and 21.3%, respectively.

SO was more efficient in activating the Keap1-Nrf2 signaling pathway compared to treatment with AVA. Oat phenolic compounds together with β-glucans may be acting synergistically, thus offering greater protection for cancer prevention and treatment.”

https://www.mdpi.com/2304-8158/9/2/169/htm “Chemopreventive Effect of the Germinated Oat and Its Phenolic-AVA Extract in Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) Model of Colon Carcinogenesis in Mice”

The supplementary material developed this oat cultivar’s seed and sprout profiles for 138 phenolic compounds. It measured C-type AVAs, but not A-type AVAs.

This was my model study for Sprouting whole oats.


A second study was reviewed in Eat oats today! and repeated here:

“The first evaluation of anti-inflammation effects of A-type AVAs was published from our own group. Fifteen A-type AVAs from commercial sprouted oat products interacted with lipopolysaccharide-induced nitric oxide production and iNOS expression.”

https://pubs.acs.org/doi/full/10.1021/acs.jafc.9b06812 “Quantitative Analysis and Anti-inflammatory Activity Evaluation of the A-Type Avenanthramides in Commercial Sprouted Oat Products” (not freely available)

Oat variety and sprout age weren’t available for the six sprouted oat products tested, so oat seed-to-sprout comparisons weren’t possible. A-type AVA comparisons among products were performed, but weren’t meaningful due to unknown varieties, ages, product processing, and storage.


A third study compared four grains’ sprouted and unsprouted contents:

“Seeds were soaked at 25°C in 1 L of distilled water for 20 (brown rice), 12 (sorghum and millet) and 8 h (oat), respectively. Hydrated grains were allowed to germinate with layering over wet cellulose pads in a humid chamber for 60 h at 25°C (oat seeds) or 30°C (brown rice, sorghum, and millet seeds) with 95% relative humidity.

All seeds derived from brown rice and oat were germinated after 48 h in the humid chamber. Germinated grains were dried at 50°C until reaching a moisture content of 10%. Sample seeds were milled to fine flour, screened through a 100-mesh sieve and stored at 4°C for further analysis.

After 60 h of germination, sprout length in sorghum and millet ranged from 8 to 24 mm, while sprouts obtained from brown rice and oat ranged from 3 to 6 mm.

Compared to raw flours, germinated flours derived from brown rice, sorghum, and millet had lower gelatinization enthalpy, whereas germinated oat flour showed higher gelatinization enthalpy.

During germination, enzymes are activated, catalyzing starch degradation, which may disrupt the double helical structure of starch. Consequently, less energy is required to unravel and melt double helices of starch in germinated flours. The increase in gelatinization enthalpy of germinated oat flour may be due to dissolution of hydrolyzed starch granules during germination.”

https://link.springer.com/article/10.1007%2Fs10068-020-00770-2 “Influence of germination on physicochemical properties of flours from brown rice, oat, sorghum, and millet” (not freely available)


The first study sprouted oats for five days to full germination and a minimum radicle length of 6.25 cm. The third study sprouted oats to full germination in 60 hours and a 3 mm minimum total length.

At the same 25°C, with 60% relative humidity and daily watering, it took 120 hours to achieve full germination. With 95% relative humidity, it took half that time.

Was humidity a relevant difference in oat sprout growth? Would Choyang variety oat sprouts increase their minimum 3 mm total length more than 20 times between Hours 60 and 120 to match the minimum Turquesa radicle length?

This is a count of PubMed “oat sprout” search results, 20 results total:

A “broccoli sprout” search returned 648 results. Is oat sprout research just getting started?

Part 2 of The transgenerational impact of Roundup exposure

This 2020 study followed up The transgenerational impact of Roundup exposure using the Washington State Unversity research group’s most recent methodology in DEET and permethrin cause transgenerational diseases:

“The herbicide glyphosate has been shown to promote epigenetic transgenerational inheritance of pathology and disease in subsequent great-grand offspring (F3 generation). The current study was designed to identify epigenetic biomarkers for glyphosate-induced transgenerational diseases using an epigenome-wide association study.

Pathologies investigated included prostate disease [13 of 44 subjects], kidney disease [11 of 44], obesity [19 of 45], and presence of multiple disease [10 of 45]. Sperm were collected from F3 glyphosate lineage males and used to identify specific differential DNA methylation regions (DMRs) and differential histone retention sites (DHRs).

The number of DHRs were less than the number of DMRs, and DHRs were found to have disease specificity. The combination of DMRs and DHRs is anticipated to facilitate pathology diagnosis.

Low sample number is a limitation in the current analysis. Potential higher variability in data needs to be considered.

This is one of the first observations of DHRs as potential biomarkers for disease. The current study used glyphosate induction of transgenerational disease as a proof of concept such environmental biomarkers can be identified and potentially used as diagnostics for disease susceptibility in the future.”

https://www.tandfonline.com/doi/full/10.1080/15592294.2020.1853319 “Epigenome-wide association study for glyphosate induced transgenerational sperm DNA methylation and histone retention epigenetic biomarkers for disease”


Eat oats today!

This 2020 food chemistry review provided phenolic-compound reasons to eat oats:

“Phenolamides result from the conjugation of hydroxycinnamic acids with amines. These products contain a variety of metabolic, chemical, and functional capabilities due to the large number of possible combinations among the parent compounds.

Of the currently known phenolamides, the most common are avenanthramides (AVAs), which are unique in oats. AVAs possess anti-inflammatory, anti-itch, anti-atherosclerosis, antioxidant, anti-cancer, anti-obesity, anti-fungal, anti-microbial, and neuroprotective properties.

Twenty-nine C-type AVAs have been identified in oats, and twenty-six A-type AVAs.

  • C-type AVAs in commercially available oat products range from 36.49-61.77 mg/kg (fresh weight).
  • A-type AVAs represent approximately 22.5% of total AVA levels in regular oats and 24.7-33.0% in commercial sprouted oats.

Steeping raw groats increased AVA concentrations.”

These reviews were referenced:

“Since publication of these two reviews, a few new studies reported AVAs’ beneficial health effects, mainly related to their anti-inflammatory and anti-cancer activities. AVAs can:

  • Significantly decrease IL-6, IL-8, and MCP-1 in endothelial cells;
  • Inhibit IL-1β- and TNF-α-induced NF-κB activation; as well as
  • Expression of adhesion molecules; and
  • Adhesion of monocytes to endothelial cell monolayer.

In 2020, the first evaluation of anti-inflammation effects of A-type AVAs was published from our own group. Fifteen A-type AVAs from commercial sprouted oat products interacted with lipopolysaccharide-induced nitric oxide production and iNOS expression.

Colloidal oatmeal’s natural components, AVAs, help to restore and maintain skin barrier function. AVAs are safe, well tolerated, and can be effective as adjuvant treatment in atopic dermatitis.

In one mouse model, a C-type AVA was able to mitigate many adverse effects of Alzheimer’s Disease. It restored hippocampal long-term potentiation and synaptic function, enhanced memory function, suppressed pro-inflammatory cytokines TNF-α and IL-6 levels, reduced caspase-3 levels, and increased pS9GSK-3β and IL-10 levels.

AVAs downregulated expression of hTERT and MDR1, pro-survival genes for cancer cells, and COX-2 mRNA and PGE2 levels, known pro-inflammatory markers. AVAs induced apoptosis by activating caspases 8, 3, and 2.”

https://pubs.acs.org/doi/10.1021/acs.jafc.0c02605 “The Chemistry and Health Benefits of Dietary Phenolamides” (not freely available)


Hadn’t thought about sprouting oats before this paper.

Week 34 of Changing to a youthful phenotype with broccoli sprouts

1. Thank you to readers of this blog who find the 650+ curations and other posts worth their time. I reread blog posts after you read them, and sometimes improve them for our mutual benefit.

One such post this week was Broccoli sprout compounds include sinapic acid derivatives. Although it was already fairly detailed, it received a half-dozen improvements.

  • Those researchers measured composition changes of 31 compounds (18 sinapic acid derivatives, 8 glucosinolates, and 5 flavonoids) identified in seed-2-4-6-day germination stages of one cultivar. They provided convertible dry weight and fresh weight measurements in mg / g.
  • It complemented the 3-day-old broccoli sprouts have the optimal yields study comparisons of six cultivated varieties’ seed-3-5-7-day germination stage weights and measurements with their origins using a milligram-per-gram-of-seeds scale:

    “To be comparable, the content of these bioactive compounds from 100 fresh sprouts was divided by the weight (g) of 100 seeds, and then this value was compared with their content from one gram seeds.”

  • The sinapic acid study discussed another study for:

    “In a study, diminishing amounts of total phenolic acids in sprouts of three broccoli cultivars was observed only between 3rd and 7th day of germination under photoperiod conditions and only when expressed on fresh weight basis. After recalculating results to dry weight, amounts were increasing during the whole 14-day observation period.”

All studies were scientifically informative. Still, results depended on researchers’ operative paradigms, and human behavior such as unconscious act-outs of unsatisfied needs to feel important.

2. Speaking of which, I viewed a 1:48 video with broccoli sprout experts who disparaged microwaving around the 1:10 mark. I’m not an expert, but I’ve eaten a clinically-relevant dose of microwaved broccoli sprouts every day for 34 weeks now.

Here are a few studies of microwaving’s effects on phenolic, glucosinolate, and flavonoid broccoli compounds. Just for those who value evidence more than opinion.

  • Microwaving broccoli sprouts may not affect phenolic levels found four of five test cases didn’t significantly diminish total phenolic fresh weight contents of whole broccoli. They blended 100 grams broccoli in 200 ml water, halved the purée, then microwaved half on 700W power for 30 seconds. No disclosure of what temperature was achieved, but it was probably < 60°C (140°F). Microwaving significantly increased the glucosinolate hydrolysis product indole-3-carbinol:

    “I3C in broccoli was increased by 3.1, 9.1 and 1.9 folds respectively using blenders 1, 2 and 5 with microwaving.”

  • Microwave broccoli to increase flavonoid levels study design was “Broccoli florets (150 g) were put in a microwave safe bowl with a 1 tablespoon [15 ml] of water” and a 1200W microwave on full power for one minute. Although this may have produced temperatures > 60°C, flavonoid fresh weight contents increased > 30%:

    Microwaving may increase extractability and/or release from binding to other compounds as a result of matrix softening.

  • Microwave broccoli to increase sulforaphane levels demonstrated significant differences for 450W (LL) and 900W (HL) power settings in glucoraphanin and sulforaphane dry weight amounts when broccoli florets were microwaved to the same temperatures. Compare white bar sulforaphane amounts for LL60 and HL60 (both 60°C), annotated as E and F:

    “Microwave treatment causes a sudden collapse of cell structure due to the increase in osmotic pressure difference over vacuole membrane. Microwave irradiation might help to release more conjugated forms of glucosinolates and then get hydrolyzed by released myrosinase.

  • Enhancing sulforaphane content confirmed the above 60°C finding with broccoli florets:

    “The best treatment temperature for maximizing sulforaphane yield was 60 °C. The slightly higher sulforaphane yield than would be predicted from the level of glucoraphanin in raw broccoli requires further investigation. The sulforaphane yield of broccoli after 5 min thermal treatment at 65 °C was even lower than the value obtained for raw broccoli.”

3. I see socialistic animal behavior often during beach walks. If one seagull pecks a food morsel, a half-dozen others immediately position themselves to take it. It’s a race to the bottom of existence.

Too bad we humans don’t learn pertinent lessons from others’ experiences, much less our own. Today’s US Thanksgiving provides one example.

Richard Ebeling presented the factual Thanksgiving story a while back. Have you read about collectivism that arrived with the Mayflower in 1620? Do you think we’ve learned what we needed to learn about communism from four centuries ago through today?

4. Seagulls are also inspirational in their flock behavior of joie de vivre predawn flying.

Part 2 of Eat broccoli sprouts for your eyes

I was a little bothered by an unreferenced statement in Eat broccoli sprouts for your eyes that:

“Once AGEs are formed, most are irreversible.”

I searched curated 2020 studies for “revers” and found that recent blog studies favored reversibility of epigenetic changes 12-to-2. Do they reflect my selection bias, or is there something different about AGEs?

Let’s start with this statement:

“Although AGEs are irreversible adducts and cross-links in our tissues, these can be removed through different proteolytic capacities:

  • The ubiquitin proteasome system (UPS) – Ubiquitin is a protein that when conjugated to a protein substrate can facilitate degradation of that substrate by the proteasome. Obsolete or damaged proteins are tagged with ubiquitin and these ubiquitinated substrates are degraded by the proteasome. Operates mainly on soluble substrates.
  • Autophagy – Can operate on insoluble substrates, including organelles such as mitochondria. Autophagy requires macromolecular assemblies and organelles to identify, sequester, and eventually degrade substrates via the lysosome.

Unfortunately, the function of both proteolytic pathways declines with extensive glycative stress and upon aging in many tissues, resulting in intracellular accumulation of protein aggregates (also glycated conjugates) and dysfunctional organelles. This thwarts strategies to lower AGEs accumulation by boosting proteolytic capacities.”

https://www.mdpi.com/2076-3921/9/11/1062/htm “Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy”


So humans can remove irreversible AGE epigenetic changes as long as the individual isn’t too stressed or old? Studies from 2008 to 2012 were cited for the above statement and graphic.

Citation 211 Sulforaphane delays diabetes-induced retinal photoreceptor cell degeneration (not freely available) 2020 findings were instructive:

“SF [sulforaphane] can delay photoreceptor degeneration in diabetes. The underlying mechanism is related to:

  • Inhibition of ER [endoplasmic reticulum] stress;
  • Inflammation; and
  • Txnip [thioredoxin-interacting protein] expression through activation of the AMPK [adenosine 5′-monophosphate (AMP)-activated protein kinase] pathway.

Function of the retina in diabetic [DM] mice as determined by ERG [electroretinography].”


This chart demonstrated that preventing diabetes’ retinal effects (non-diabetic control bar) was measurably better than trying to fix them. Are future choices of humans who give themselves this non-communicable disease also limited to addressing symptoms?

The AMPK pathway was mentioned in:

  1. Reversal of aging and immunosenescent trends with sulforaphane:”

    Dihydroxyvitamin D3 and sulforaphane are compounds that safely induce AMPK activation, and may have wide-ranging implications for both normal and pathological aging.”

  2. Part 2 of Reversal of aging and immunosenescent trends with sulforaphane:

    “NQO1 plays a key role in AMPK-induced cancer cell death through the CD38/cADPR/RyR/Ca2+/CaMKII signaling pathway. Expression of NQO1 is elevated by hypoxia / reoxygenation or inflammatory stresses through nuclear accumulation of the NQO1 transcription factor, Nrf2. Activation of the cytoprotective Nrf2 antioxidant pathway by sulforaphane protects immature neurons and astrocytes from death caused by exposure to combined hypoxia and glucose deprivation.”

This first example was vitamin D3’s separate yet connected signaling pathway that acts both additively and synergistically with broccoli sprout compound effects. Followed by signaling pathways becoming cascadingly activated from sulforaphane’s main effect, Nrf2 signaling pathway activation.