Week 42 of Changing to a youthful phenotype with broccoli sprouts

1. I had two wake-up calls on scale this week. The first started with A follow-on study to 3-day-old broccoli sprouts have the optimal yields that found:

“Activity of free MYR was the highest at pH 5.0, and it decreased rapidly when pH was less or higher.”

Bought a pH meter and ReaLemon to adjust pH of the 100 ml filtered water used to immerse broccoli sprouts for microwaving.

It turns out that only 3 drops of pH 3.5 ReaLemon is needed to change 100 ml of pH 7.0 filtered water to pH 5. A 100-fold pH change with a ReaLemon amount too small for my scale to measure.

The second came from Broccoli sprouts activate the AMPK pathway when translating mouse experimental time frames to humans. One of the effects wasn’t realized during an equivalent 10 human years, and required another 12 human-equivalent years to manifest.

Patience with broccoli sprout efforts may stretch way past what I’ve imagined so far. 42 wasn’t the answer:

Thanks for all the fish!

2. I ran out of the Avena sativa oats used in Sprouting hulled oats from starting 20 gram batches twice a day. That Montana vendor is out of stock, so I bought another oat species, Avena nuda. I’ll use Degree of oat sprouting as my model, which used an Avena nuda oat variety.

I’ve had a 97% germination rate with Avena sativa hulled oats. Too bad for vendors who:

  • Sell substantially the same hulled oats, and put a Not for sprouting disclaimer in product descriptions without explaining exactly why their product can’t be sprouted; and
  • Don’t know enough about what they’re selling to state We don’t recommend them for sprouting and “Our Organic Gluten Free Oat Groats can not be sprouted due to the hull being removed.”

It’s the fiber, not the fat

I came across this 2020 fiber-vs-fat rodent study from its citation in Gut microbiota and aging:

“Dietary intervention studies largely revolve around altering fat content. Little consideration has been given to amount of fiber and whether or not it is soluble.

We examined age- and sex-specific effects of a refined high-fat/low soluble fiber diet (rHFD) on body weight and gut microbiota composition relative to mice fed a refined low-fat diet (rLFD) that is nutritionally and compositionally matched to rHFD.

Chow diet supplied energy as 13.4% fat, 28% protein, 57.9% carbohydrates, and 15% dietary fiber (range of total dietary fiber between 15 and 25% with 15–20% insoluble and 2–5% soluble fiber).

Two refined diets were used: rLFD supplying energy as 12% fat, 21% protein, and 67% carbohydrates; and rHFD supplying energy as 45% fat, 20% protein, and 35% carbohydrates. [Both rLFD and rHFD contained] 5% fiber in the form of insoluble cellulose.

Young adult animals consumed chow diet for 17 weeks, and 1-year aged animals consumed chow diet for 60 weeks. We included a 1-week transition period wherein all mice were fed rLFD. For the following 4 weeks, half of the animals remained on rLFD while the other half consumed rHFD.

After 4 weeks, young adult female mice showed resistance to weight gain to rHFD, consistent with previous reports. Aged females fed rHFD showed rapid body weight gain relative to rLFD-fed aged females.

Young adult and 1-year aged males showed a significant gain in body weight that was independent of refined diet formulation, suggesting that other components of the refined diet contribute to body weight gain that is independent of dietary fat.

Transition from chow diet to rLFD resulted in changes to microbiota community structure and composition in all groups, regardless of sex and age. This dietary transition was characterized by a loss within phylum Bacteroidetes and a concomitant bloom of Clostridia and Proteobacteria in a sex- and age-specific manner.

No changes to gut microbiota community structure and composition were observed between mice consuming either rLFD or rHFD, suggesting that transition to rLFD that lacks soluble fiber is the primary driver of gut microbiota alterations, with limited additional impact of dietary fat on gut microbiota.”

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-0791-6 “It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome”


It’s alright for researchers in the Abstract and Introduction section to interpret how their rodent study may apply to humans. I appreciate when they confine their statements elsewhere to what they actually measured and found.

This study didn’t measure inflammation, behaviors, neurobiologics, metabolic parameters, immune biomarkers, or hormones. They can qualify statements with “may” all they want, but this study didn’t provide direct evidence for either:

“Age-specific vulnerability to diet-induced body weight gain in females may be related to aging-related changes to estrogens.”

or

“The lack of differences between rLFD- and rHFD-fed mice may indicate that gut microbiota structure and composition can be dissociated from body weight and systemic inflammation.”

Papers that cite this study can’t rely on its Abstract for “regulating metabolic, immune, behavioral, and neurobiological outcomes” because its experiments didn’t directly measure such outcomes.

Removing 2-5% soluble fiber from subjects’ diet had large effects. I look forward to reading human studies that are informed by this study.

Degree of oat sprouting

This 2019 study investigated oat sprout parameters:

Huskless oat ‘Gehl’ cultivated in 2016 in Canada, was used throughout the study. Grains (500 g) were sprouted at different temperatures (10, 14, 20, 25, and 30°C) and for different times (1, 2, and 3 days). Changes in vitamin C, β‐glucan, and reducing sugar were monitored, and α‐amylase activity was studied as a marker for total enzyme activity.

Mass fraction of radicle [root] and coleoptile [shoot] in grain correlated very well with β‐glucan level. A similarly good correlation was found for the much easier applicable degree of sprouting, visual assessment of coleoptile length set into relation to grain size.

Germinability after 3 days was about 99% at all temperatures. Temperatures between 20° and 25°C yielded the most dramatic changes in properties of sprouted oats.

  • At 3 days, α‐amylase activities at 20° and 25°C increased significantly to values one order of magnitude larger than those for other temperatures.
  • β‐glucan content was decreased after 3 days at all temperatures. Degradation was most pronounced at 20°C, almost halving initial β‐glucan content to 3.9%.
  • No ascorbic acid was present in native grain. Upon sprouting, a significant increase in ascorbic acid content was found – except at 30°C – with highest levels at 20°C.

Ascorbic acid content in radicles and coleoptile was four times higher than that in grain without radicles and coleoptile. Oat grains sprouted for 3 days at 20°C had an average degree of sprouting of 3; hence, radicles and coleoptile contributed about 8% of mass. These findings indicate that a fast visual determination of degree of sprouting allows to estimate, for example, ascorbic acid content without doing expensive experiments.

Around 20% of grains sprouted at 20° and 25°C had a coleoptile longer than a full grain length (degree of sprouting 5). Less long coleoptiles developed at other temperatures.

  • For the 3‐day sprouting period, the longest coleoptile was observed for sprouting at 25°C.
  • At 30°C average degree of sprouting was 1.4, and grains showed no practical radicle growth.

Coleoptile and radicle growth (input parameters for the degree of sprouting) and reducing sugars and α‐amylase activity are interdependent. Degree of sprouting could develop into a reliable characterization method for sprouted grains, usable for predicting compositional and nutritional changes of oats during sprouting.”

https://onlinelibrary.wiley.com/doi/full/10.1002/cche.10203 “Sprouting of oats: A new approach to quantify compositional changes”


Relative humidity wasn’t mentioned in this study. I asked the corresponding coauthor about it, since two Sprouting oats studies stated relative humidity as a factor for sprouting oats.

I also asked them to explain their “4.5‐hr wet steeping, 19‐hr air rest, and 4‐hr steeping, all at 20°C” procedures to start germination, since I didn’t have access to the cited study. No reply yet.

This was my model study for Sprouting hulled oats.

Ducks in a row

Reverberations, harmonics, history

Catching up with Martin Armstrong from 2012:

“Corruption within the Roman Republic was certainly at its peak during the first century BC. There was a brewing debt crisis in Rome and the oligarchy was determined to keep power at any cost. Corruption was so widespread that interest rates doubled from 4% to 8% for the elections of 54 BC because there was so much bribery going on to gain votes.

Caesar was clearly a Popularis, a man of the people who stood against the corruption of the Republic. Like today, we have no real voting control over the fate of the nation. Those who are in charge of the political machine control the real political state.

Caesar knew who his enemies truly were. He clung to his belief that if the majority of the Senate were free of the Oligarchy of Cato and Cicero, they would surely see the light. To persuade them, Caesar wrote his seven books on his truly remarkable conquest of Gaul.

Cato and his Oligarchy were so intensely anti-Caesar that they were willing to do anything to anybody. But this was a moment in time where the corruption had simply gone too far.

By September 29th, 51 BC, Caesar ran out of civilized options. Crossing the Rubicon became the only option.


Janus was the symbol of a cyclical change, the departing of one era and the birth of another. His shrine consisted of two doorways that traditionally were left open in time of war and kept closed when Rome was at peace. Leaving the doors open in time of war symbolized the new era that was possible.

Property values were collapsing. Debts were excessive. Those who held mortgages refused to accept just the property back.

Caesar dealt with this major extraordinary situation in a truly astonishing manner, realizing that assets and money are in a union of opposing forces, yet bound together. Value of property is not a constant relationship for money itself is not like a ruler.

Money is more akin to a rubber band even when it may be gold or silver. Money is like everything else – subject to the whims of supply and demand.

The economy is a dynamic relationship between everything with no real constant. We are at a tremendous disadvantage because we have grown up thinking in a flat linear world that does not exist. We limit ourselves by thinking in money,

Caesar explained that he had to borrow to fund the war and it was unethical for him to cancel all debts since he himself would benefit. Generals come and go, but true economic reformers of the state to save the nation are rare indeed. Caesar paid for his economic reform with his life.

There can be no greater example of political corruption that required desperate reform than the calendar. Caesar replaced the typical lunar year and introduced his new calendar based on 365¼ solar days on January 1st, 45 BC.

Sulla [138 – 78 BC] was a highly original, gifted and skillful general, never losing a battle. His rival described Sulla as having the cunning of a fox and the courage of a lion – but that it was the former attribute that was by far the most dangerous. This mixture was later referred to by Machiavelli in his description of the ideal characteristics of a ruler.

Sulla was more interested in retaining institutes of government while eliminating people occupying them whereas Caesar was far more compelled to act to restore institutions and to spare people, even his more threatening enemies. These are not actions of a man interested in personal power, but a man interested in saving his country.

You live in an oligarchy no different today than what Caesar faced back then. One maxim always holds true; Absolute power, corrupts absolutely!”

It appears that only Julius Caeser ever understood

100-44 BC


A normal distribution

Does sulforaphane reach the colon?

This 2020 study subject was antimicrobial activity of sulforaphane:

“This study explored the role that digestion and cooking practices play in bioactivity and bioavailability, especially the rarely considered dose delivered to the colon.

A broccoli powder soup was prepared which contained 26.5 µmol of sulforaphane per 200 ml portion. Addition of 2% mustard seed powder at the cooling stage of the soup preparation process (~ 60 °C) increased the level of sulforaphane by nearly fourfold, 102 µmol per 200 ml.

Recovery of sulforaphane in ileal fluids post soup consumption was < 1% but the addition of mustard seeds increased colon-available sulforaphane sixfold. Analysis of glucosinolates composition in ileal fluids revealed noticeable inter-individual differences.

Consumption of sulforaphane-enriched broccoli soup may inhibit bacterial growth in the stomach and upper small intestine, but not in the terminal ileum or the colon.”

https://link.springer.com/article/10.1007/s00394-020-02322-0 “Sulforaphane-enriched extracts from glucoraphanin-rich broccoli exert antimicrobial activity against gut pathogens in vitro and innovative cooking methods increase in vivo intestinal delivery of sulforaphane”


My son has often asked me about adding mustard seeds to broccoli sprouts. Papers citing one of this study’s coauthors’ series of mustard seed studies include:

I bought a 74 gram container of mustard seeds at the local grocery store, and ground down a third as pictured. A level scoop of mustard seed powder weighs 1.5 grams.

1.5 g divided by my twice-daily 65 g of microwaved broccoli sprouts = 2%, matching this study’s methods. That’s a 24-day mustard seed supply for $2.19.

I’ll add mustard seed powder immediately after microwaving broccoli sprouts when they’re ≤ 60°C (140°F). Allowing the mixture to process for five minutes potentially facilitates myrosinase hydrolization of glucoraphanin and other glucosinolates into healthy isothiocyanate compounds.


Other aspects of this study:

1. I don’t consider overcooking broccoli an “innovative cooking method.” It’s more like researchers creating an effect in order to publish “increased the level of sulforaphane by nearly fourfold” which was presented numerically and emphasized twice in text.

2. A perspective on these types of studies from Epigenetic mechanisms of muscle memory:

“Underpowered studies may only be useful to check if the experiment works, but not as much for testing and estimating effects.

3. I didn’t agree with this study’s treatment of individual differences.

I read three other papers’ study design recommendations for researchers regarding inter-individual variability, but didn’t see markedly better ideas. Most of their verbiage concerned how to reduce heterogeneous effects rather than to understand causes and signals. Where are thoughtful counters to meaningless averages / standard deviations / p values / and so on?

4. “Addition of mustard seeds increased colon-available sulforaphane sixfold” was presented numerically and emphasized thrice in text. Too often for a n=11 study.

What needed further explanations were detailed causes for each individual’s responses or lack thereof. Stratifying subgroups into unresponsive:

  • What happened in Subjects 6’s and 10’s lives to make them unresponsive to any sulforaphane dose?
  • Were Subjects 1, 2, 5, and 7 instances of zero sulforaphane actually errors in measuring or processing? If not, what were individual causes for instances of no response?

And responsive:

  • Were Subjects 4, 8, 9, 11, and 12 averages meaningful? Excluding Subject 4’s 3.14 μmol, was the four remaining subjects’ 0.19 to 0.63 μmol average 332% increased response meaningful when the sulforaphane dose increased 392%?
  • What caused Subject 4’s 872% increased response when the sulforaphane dose increased 392%?

5. Findings of sulforaphane in 11 g broccoli powder not reaching the colon may not apply to 65 g broccoli sprouts due to mass and quantity differences. Broccoli sprouts definitely pass into the colon, like any other fibrous vegetable. Unhydrolyzed products are hydrolyzed by microflora there.

I create sulforaphane from broccoli sprouts shortly before eating them, and don’t depend on metabolism after the stomach to produce isothiocyanates. These findings may assist with that effort.

Clearing out the 2020 queue of interesting papers

I’ve partially read these 39 studies and reviews, but haven’t taken time to curate them.

Early Life

  1. Intergenerational Transmission of Cortical Sulcal Patterns from Mothers to their Children (not freely available)
  2. Differences in DNA Methylation Reprogramming Underlie the Sexual Dimorphism of Behavioral Disorder Caused by Prenatal Stress in Rats
  3. Maternal Diabetes Induces Immune Dysfunction in Autistic Offspring Through Oxidative Stress in Hematopoietic Stem Cells
  4. Maternal prenatal depression and epigenetic age deceleration: testing potentially confounding effects of prenatal stress and SSRI use
  5. Maternal trauma and fear history predict BDNF methylation and gene expression in newborns
  6. Adverse childhood experiences, posttraumatic stress, and FKBP5 methylation patterns in postpartum women and their newborn infants (not freely available)
  7. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double‐blind, controlled feeding study
  8. Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice
  9. Epigenetic mechanisms activated by childhood adversity (not freely available)

Epigenetic clocks

  1. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality (not freely available)
  2. Epigenetic age is a cell‐intrinsic property in transplanted human hematopoietic cells
  3. An epigenetic clock for human skeletal muscle
  4. Immune epigenetic age in pregnancy and 1 year after birth: Associations with weight change (not freely available)
  5. Vasomotor Symptoms and Accelerated Epigenetic Aging in the Women’s Health Initiative (WHI) (not freely available)
  6. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data

Epigenetics

  1. The Intersection of Epigenetics and Metabolism in Trained Immunity (not freely available)
  2. Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade
  3. Transcriptional Regulation of Inflammasomes
  4. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways
  5. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands
  6. Repeated stress exposure in mid-adolescence attenuates behavioral, noradrenergic, and epigenetic effects of trauma-like stress in early adult male rats
  7. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements
  8. Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation
  9. Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights
  10. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein
  11. Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice
  12. FKBP5-associated miRNA signature as a putative biomarker for PTSD in recently traumatized individuals
  13. Metabolic and epigenetic regulation of T-cell exhaustion (not freely available)

Aging

  1. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches
  2. Epigenetic regulation of bone remodeling by natural compounds
  3. Microglial Corpse Clearance: Lessons From Macrophages
  4. Plasma proteomic biomarker signature of age predicts health and life span
  5. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk

Broccoli sprouts

  1. Dietary Indole-3-Carbinol Alleviated Spleen Enlargement, Enhanced IgG Response in C3H/HeN Mice Infected with Citrobacter rodentium
  2. Effects of caffeic acid on epigenetics in the brain of rats with chronic unpredictable mild stress
  3. Effects of sulforaphane in the central nervous system
  4. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era (not freely available)
  5. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls (not freely available)
  6. Sulforaphane Reverses the Amyloid-β Oligomers Induced Depressive-Like Behavior (not freely available)

Sulforaphane in the Goldilocks zone

This 2020 paper reviewed hormetic effects of a broccoli sprout compound:

“Sulforaphane (SFN) induces a broad spectrum of chemoprotective effects across multiple organs that are of importance to public health and clinical medicine. This chemoprotection is dominated by hormetic dose responses that are mediated by the Nrf2/ARE pathway and its complex regulatory interactions with other factors and pathways, such as p53 and NF-κB.

The stimulatory zone for in vitro studies proved to be consistently in the 1-10 μM range. Hormetic studies of SFN strongly targeted activation of Nrf2.

Capacity to activate Nrf2 diminishes with age, and may affect capacity of SFN to effectively enhance adaptive responses.

A 4-hour exposure induced a 24 hour Nrf2-mediated increase in enzymes that reduce free-radical damage in neurons and astrocytes. Repeated 4-hour treatment for four days affected an accumulation along with a persistent protection.

In the case of continuous exposure to SFN, such as taking a daily supplement, SFN treatment did not result in an accumulation of HMOX1 [heme oxygenase (decycling) 1 gene] mRNA or protein. This suggested that HMOX1 response may experience feedback regulation, avoiding possible harmful overproduction.”

https://www.sciencedirect.com/science/article/abs/pii/S1043661820315917 “The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis” (not freely available)


One coauthor has been on a crusade to persuade everybody of this paradigm. Hormesis’ hypothesis isn’t falsifiable in all circumstances, however.

Hormetic effects may be experimental considerations. But what’s the point of performing sulforaphane dose-response experiments in contexts that are physiologically unachievable with humans? Two examples:

  1. Autism biomarkers and sulforaphane:

    “There was no concentration-dependence in the induction of any of the genes examined, with the higher (5 μM) concentration of SF even showing a slightly diminished effect for the induction of AKR1C1 and NQO1. Although this concentration is achievable in vivo, more typical peak concentrations of SF (and its metabolites) in human plasma are 1-2 μM.”

  2. Human relevance of rodent sulforaphane studies:

    “Over two-thirds of the animal studies have used doses that exceed the highest (and bordering on intolerable) doses of sulforaphane used in humans. The greater than 4-log spread of doses used in mice appears to be driven by needs for effect reporting in publications rather than optimization of translational science.”

This paper cited many hormetic effects that were human-irrelevant without making a distinction. It also had parts such as:

“The capacity for high concentrations of AITC [allyl isothiocyanate] to enhance genetic damage is not relevant since such high concentrations are not realistically achievable in normal human activities.

Humans ingest only the R-isomer of SFN via diet. Their dosing strategy adopted concentrations of R-SFN that were less than those employed to induce cytotoxic effects in cancer cells and that simulated its consumption as a dietary supplement.”


Landing eagle

DIM effects on BRCA carriers

This 2020 study evaluated a broccoli sprout compound’s effects on breast cancer development:

“Women who carry the BRCA mutation are at high lifetime risk of breast cancer, but there is no consensus regarding an effective and safe chemoprevention strategy. A large body of evidence suggests that 3,3-diindolylmethane (DIM), a dimer of indole-3-carbinol found in cruciferous vegetables, can potentially prevent carcinogenesis and tumor development.

A year’s supplementation with DIM 100 mg daily in BRCA carriers was associated with a significant decline in FGT [fibroglandular tissue] amount on MRI. Larger randomized studies are warranted to corroborate these findings.”

https://academic.oup.com/carcin/article/41/10/1395/5847633 “3,3-Diindolylmethane (DIM): a nutritional intervention and its impact on breast density in healthy BRCA carriers. A prospective clinical trial”


This study didn’t address DIM bioavailability. What were the DIM amounts each subject actually processed? How was DIM bioavailability related to their “significant decline in FGT” outcome?

Studies that found DIM was only 1-3% bioavailable after oral administration include:

PubChem lists DIM molecular weight as 246.31 g/mol. A 4.06 μmol DIM amount (.001 / 246.31) equals a 1 mg weight. The study’s daily DIM intake 100 mg weight was a 406 μmol amount.

(406 μmol x 1%) = 4 μmol and (406 μmol x 3%) = 12 μmol. Was DIM bioavailability in a 4 – 12 μmol range?

Eat broccoli sprouts for DIM and Our model clinical trial for Changing to a youthful phenotype with broccoli sprouts measured DIM excreted as a result of eating 30 grams raw broccoli super sprouts every day. Indolic glucosinolate precursors of DIM were as follows:

indolic glucosinolates

DIM at the 70-day point was an average 0.650 μmol amount, which was almost twice those subjects’ 0.334 average beginning amount. If each subject’s DIM was collected over 24-hours, using precursor conversion calculations may have produced bioavailability measurements.


Young dolphins eating breakfast

Microwaving broccoli sprouts may not affect phenolic levels

Three papers investigated microwaving plant material for phenolic compounds. The first was a 2020 review that compared industry techniques:

“Phenolic compounds are widely used as natural antioxidants and antimicrobial agents. They also exhibit antiallergenic, antiatherogenic, and anti-inflammatory activities.

Although the nature and properties of raw materials strongly influence extraction, all extraction processes share major parameters:

  • Solubility of phenolic compounds is higher in polar solvents such as water and ethanol or their mixtures;
  • Diffusion of compounds and mass transfer rates are enhanced by increased temperature; and
  • Longer extraction times allow for a more intimate and effective contact between solvent and matrix.

MAE [microwave-assisted extraction] is an efficient technique due to its ability to heat a matrix internally and externally without a thermal gradient. Phenolic compounds and ionic solutions strongly absorb microwave energy. Microwaves cause internal superheating of water molecules of a sample, promoting cellular disruption and enhancing the recovery of target compounds from the matrix.

MAE produces the highest total phenolic content, 227.63 mg GAE [gallic acid equivalent] /g dry basis.”

https://link.springer.com/article/10.1007%2Fs13197-020-04433-2 “Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds” (not freely available)


I didn’t see any studies in the first paper that I could directly use. Either temperature was too high, or microwave power too low, or was something I’m not going to do, like substitute ethanol for water.

A second 2020 paper compared three industry techniques to extract phenolics from olive and wine post-processing plant material:

“In the case of olive pomace, TPC [total polyphenol content] improved by increasing the ethanol concentration from 20 to 50%, and temperature from 60 to 90°C. No significant improvement was observed when increasing time from 5 to 15 min.

The best extraction efficiency for olive pomace residues was provided by MAE.”

https://www.mdpi.com/2076-3921/9/11/1074/htm “Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery”


The second study demonstrated that polyphenols weren’t harmed by temperatures up to 90°C. Microwave power was 500W per correspondence with the authors.

Microwave broccoli to increase sulforaphane levels demonstrated significant differences for 450W (LL) and 900W (HL) power settings in glucoraphanin and sulforaphane amounts when microwaved to the same temperatures. Compare sulforaphane amounts for LL60 and HL60 (both 60°C), annotated as E and F:


A third study from 2017 measured total phenolic contents, but primarily used indole-3-carbinol to probe food preparation methods:

“This study evaluated the effects of grinding and chopping with / without microwaving on the health-beneficial components, and antioxidant, anti-inflammation and anti-proliferation capacities of commercial kale and broccoli samples. The availability of indole-3-carbinol (I3C) and total phenolic contents [TPC] were evaluated.

Fifty grams and 100 g of commercial fresh kale and broccoli (including stem and leaves) samples were ground for 15 s with 200 mL of water in 5 different commercial available blenders. The ground vegetables were divided into two parts, and one part was microwaved at 700 watts for 30 s.

Availability of I3C was significantly enhanced with grinding as compared to chopping (below the limit of detection), suggesting the effect of particle size on food factor release. Particle sizes of ground kale and broccoli were 10 times smaller than chopped counterparts. Grinding [in broccoli] not only resulted in difference of particle size, but might also break plant cell walls and release enzymes such as myrosinase, which might have hydrolyzed glucobrassicin and caused a greater releasable I3C level.

Significant difference was observed in I3C availability with or without microwaving. Microwaving significantly elevated the extractable amount of I3C from broccoli regardless of the blenders used. For instance, availability of I3C in broccoli was increased by 3.1, 9.1 and 1.9 folds respectively using blenders 1, 2 and 5 with microwaving as compared to their unmicrowaved counterparts.

TPC from blended broccoli samples ranged from 0.28-0.47 mg gallic acid g-1 of fresh weight. This range was lower than a reported mean of 0.99 mg gallic acid g-1 of fresh broccoli [in another study], suggesting different cultivars, locations (USA versus France) and extraction methods (water extraction versus 70% acetone extraction) might affect releasable TPC from broccoli.”

https://www.sciencedirect.com/science/article/abs/pii/S0308814617318484 “Home food preparation techniques impacted the availability of natural antioxidants and bioactivities in kale and broccoli” (not freely available)


1. Funny that I found this third paper in a PubMed “microwave phenolic broccoli” search, but not in any Part 2 of Do broccoli sprouts treat migraines? I3C combination searches. A plain “I3C” search term like how I search PubMed weekly on “sulforaphane” would have found it.

2. Don’t understand why blenders 1-5 makes and models weren’t stated in the study. Using blender 1 made a significant difference in TPC in the above graphic, but that was the effect. What could have been the cause? Aren’t researchers obligated to provide such explanations?

And why didn’t the study text support the graphic and address all TPC results with microwaved broccoli? Microwaving produced neither significant TPC differences among blenders 2-5 broccoli samples, nor in any of the kale samples.

3. Also don’t understand why these researchers didn’t microwave chopped broccoli samples and measure them for TPC and I3C. Maybe that wouldn’t have produced anything for TPC if phenolics aren’t produced from the myrosinase hydrolysis chain of events.

But I3C is a myrosinase hydrolysis product. Testing microwaved chopped samples for I3C may have changed the above bolded statement to:

“Microwaving significantly elevated the extractable amount of I3C from broccoli regardless of the blenders used. [food preparation method.]

4. One broccoli treatment was blending 100 grams broccoli in 200 ml water, halving the purée, then microwaving half on 700W power for 30 seconds. The study didn’t say what temperature was achieved, but it was probably < 60°C because that’s similar to what I do.

Twice every day I microwave an average 65.5 grams of 3-day-old broccoli sprouts in 100 ml water on 1000W full power for 35 seconds to ≤ 60°C. I use the same 100 ml water, but more broccoli sprout weight and microwave wattage to initiate myrosinase hydrolization of glucoraphanin and other glucosinolates into sulforaphane and other healthy compounds.

5. My son encouraged me to try blending microwaved broccoli sprouts this summer. I stopped after two weeks as I consistently had trouble swallowing them.

6. The study design required microwaving broccoli sprouts after blending. I don’t think people would do it in this order at home.

It would be too messy to scrape a broccoli sprout purée out of a blender and into a microwavable dish, while maintaining a desired water volume for microwaving. The reverse order is easier – measure the desired water volume into the broccoli sprouts dish, microwave, then plop microwaved broccoli spouts into a blender.

Eat broccoli sprouts for pain?

This 2018 study investigated pain-relieving effects of two broccoli sprout compounds, sulforaphane and chlorogenic acid:

“Pharmacological evidence of the antinociceptive properties of broccoli aqueous extracts and bioactive metabolites were investigated in an experimental model of pain.

It was found that sprouts produced better antinociceptive response than seeds and inflorescence of broccoli, where SFN [sulforaphane] and CA [chlorogenic acid] were partial responsible. Opioid receptors were implicated in the antinociceptive effect of SFN, whereas calcium channels were involved in the concentration-dependent spasmolytic activity.

Our results give evidence of a dose-dependent antinociceptive effect of CA that might act in a synergic interaction with SFN and other metabolites to produce antinociceptive activity.”

https://www.sciencedirect.com/science/article/abs/pii/S0753332218333286 “Broccoli sprouts produce abdominal antinociception but not spasmolytic effects like its bioactive metabolite sulforaphane” (not freely available)


8-day-old broccoli sprouts were treated Days 5-8 with methyl jasmonate to increase glucosinolates as Our model clinical trial for Changing to a youthful phenotype with broccoli sprouts did.

I hadn’t previously noticed papers on “Chlorogenic and Sinapic acid derivatives” that are part of my daily intake, but there’s much recent research. Consider these October 2020 chlorogenic acid papers for example:


I found If it stinks, it’s good for you as a result of it citing this study. See Broccoli sprout compounds include sinapic acid derivatives to follow on that subject.

I rated this study as Required further work. This is my 31st week of eating a clinically relevant amount of broccoli sprouts every day, and I still take acetaminophen.

If it stinks, it’s good for you

This 2019 review subject was hydrogen sulfide and broccoli sprout compounds:

“Release of H2S was identified as a hidden mechanism responsible for effects of natural compounds that were used for a long time for pharmacological, therapeutic or nutraceutical purposes. For instance, the release of H2S was recognized as the main mechanism accounting for the biological effects of garlic.

There is evidence of a close overlap between numerous physiological / biological effects attributed to natural ITCs [isothiocyanates] and H2S. They both behave as antioxidant and anti-inflammatory agents, are activators of potassium channels modulating a vasodilatory effect, and are chemopreventive agents. Moreover, an impressive overlap can be observed in the molecular mechanisms of action.

Vascular inflammation results from the persistence of oxidative and/or inflammatory stimuli on the endothelium and vascular smooth muscle. These types of stimuli can be a consequence of prolonged status of mild inflammation and are typical in certain metabolic / cardiovascular diseases, spreading to all organs and tissues.

Advanced glycation end products (AGEs) are responsible for an increase in LDL. Binding of AGEs to their receptors RAGE results in an increase in intracellular ROS generation and in activation of NF-kB. Oral consumption of SFN [sulforaphane] precursor-rich broccoli sprouts decreases the serum levels of AGEs in humans.

Inflammatory response plays a pivotal role in initiation and maintenance of chronic neuropathic pain. Inhaling low concentrations of H2S protects motor neurons from degeneration and delayed paraplegia in a mouse model of sciatic constriction injury. This effect has been ascribed to the activation of the Nrf2 pathway.

Dose-dependent rise of the pain threshold mediated by SFN was fully prevented by simultaneous administration of hemoglobin, confirming that H2S is likely to be the real player in ITC-induced analgesia. Kv7 channel activation can be considered one of the main mechanisms in the antinociceptive activity of H2S-releasing drugs.”

https://www.liebertpub.com/doi/10.1089/ars.2019.7888 “Organic Isothiocyanates as Hydrogen Sulfide Donors” (not freely available)


These reviewers were long on equivalencies and short on proofs. Unlike study researchers, reviewers aren’t bound to demonstrate evidence from tested hypotheses. Reviewers are free to:

  • Express their beliefs as facts;
  • Over/under emphasize study limitations; and
  • Disregard and misrepresent evidence as they see fit.

Study researchers are obligated to provide detailed analyses of why observed effects couldn’t have been produced from unobserved causes. That didn’t happen here.

Epigenetic clock technology

This 2020 Norwegian study investigated current epigenetic clock technology:

“Epigenetic clocks are based on CpGs from the Illumina HumanMethylation450 BeadChip (450 K) which has been replaced by the latest platform, Illumina MethylationEPIC BeadChip (EPIC). EPIC is a major improvement over its predecessor, 450 K (> 450,000 CpGs), in terms of the number of probes (> 850,000 CpGs) and the genomic coverage of regulatory elements.

The training set of the other epigenetic clocks was mostly based on 450 K, except for the Horvath Skin & Blood clock which used both 450 K and EPIC-derived DNAm data. Additional CpGs on EPIC do not enhance the accuracy or precision of the epigenetic clocks when the training set is reduced.

We validated epigenetic clocks in EPIC-derived blood-based DNAm data (n = 470; 305 European women and 165 South Asian women). eABEC showed that the epigenetic age acceleration (EAA; residuals from the regression of DNAm age on chronological age) was higher in South Asian women than in Norwegian women.

The reason for the higher precision is likely due to the large training set (n = 2227) and the wide age-span of the samples (19 to 88 years for the training set of eABEC).

EPIC probes that are designed to cover regulatory regions did not increase precision. It is difficult to dismiss the possibility that other regulatory CpGs not currently included on EPIC might improve age prediction.”

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07168-8 “Blood-based epigenetic estimators of chronological age in human adults using DNA methylation data from the Illumina MethylationEPIC array”


The study’s main point was lacks in the current technology. The above graphic demonstrated that epigenetic clocks could do better across different ethnicities.

The study repeated a point from An epigenetic clock review by committee about increasing training set size. These researchers missed a point from Do epigenetic clocks measure causes or effects? that:

“The power of these measures as diagnostic and prognostic may stem from the use of longitudinal data in training them. Rather than continuing to train chronological age predictors using diverse data, it may be more advantageous to retrain some of the existing measures by predicting longitudinal outcomes.”

They also didn’t assign much relevance to coverage improvements of The epigenetic clock now includes skin:

“Although the skin-blood clock was derived from significantly less samples (~900) than Horvath’s clock (~8000 samples), it was found to more accurately predict chronological age, not only across fibroblasts and skin, but also across blood, buccal and saliva tissue.”


What I’d like to know about epigenetic clock measurements of biological age is: Why aren’t thousands of studies using them every year? How can we expect continuous improvements in their technologies or coverages or training sets without widespread use?

Rub some broccoli sprouts on it

This 2020 human/rodent study investigated treating and preventing skin photodamage with sulforaphane:

“Alterations in NRF2 signaling have been implicated in aging and stress-induced skin pigmentation disorders in the skin and hair follicles. NRF2 signaling regulates transcriptional programs involved in adaption and survival of cells in the setting of oxidative stress, and oxidative stress occurs in the setting of photodamage.

[1st human experiment with 14 subjects] Expression levels of NRF2 and its target heme-oxygenase-1 (HO-1) were evaluated by immunofluorescence (IF) in skin biopsies. Expression of NRF2 and HO-1 was significantly reduced in skin from individuals > 45 years old.

[2nd human experiment with 7 different subjects] The left arm was chosen for treatment with BSE [broccoli sprout extract], as there is typically more photodamage on the left arm due to chronic sun exposure through the car window while driving in the US. A photoprotected area of skin on an upper inner arm was also treated.

Expression of total NRF2 and phosphorylated NRF2 (NRF2-P) by IF microscopy was detected at low baseline levels in photoprotected skin, suggesting some activity of the pathway, whereas the expression of total NRF2 and NRF2-P was undetectable in untreated photoexposed skin (Un). There was significantly elevated IF expression and fold change of IF signal of NRF2 and especially NRF2-P in SF [sulforaphane]-treated skin compared with Un skin in most individuals.

There was no evidence of increased total NRF2 or NRF2-P expression in SF-treated photoexposed skin in 2 individuals. There was also no significant improvement in mottled hyperpigmentation or difference in melanin deposition following SF treatment.

[Six mouse confirmation/exploratory studies] SF is known to have several non-NRF2–mediated targets, such as NF-κB and AP-1. However, our findings suggest that negative regulation of UV-mediated hyperpigmentation observed following SF treatment is occurring in an NRF2-dependent fashion:

  • UVB+SF treatment resulted in more than a 50% decrease in skin pigmentation and melanin deposition, indicating that SF could prevent UVB-induced skin pigmentation.
  • The therapeutic effect of SF on reducing UVB-induced skin pigmentation was dependent on keratinocyte-intrinsic IL-6 receptor α (IL-6Rα) signaling that upregulated NRF2, which led to inhibition of melanogenesis.

Our results provide direct in vivo evidence of how NRF2 is involved in response to oxidative stress associated with photodamage and chronic UV exposure. Treatment of human or mouse skin hyperpigmentation with SF provided the proof of concept for targeting the NRF2 pathway as a therapeutic intervention.”

https://insight.jci.org/articles/view/139342 “Pathogenic and therapeutic role for NRF2 signaling in ultraviolet light–induced skin pigmentation”


Didn’t understand the 2nd experiment’s human dose of 5 nM sulforaphane. The lead author’s cited 2017 study Randomized, split-body, single-blinded clinical trial of topical broccoli sprout extract: Assessing the feasibility of its use in keratin-based disorders used “500 nmol of sulforaphane/mL.” Unless my math is off, the current study and previous study’s doses weren’t equivalent since 1 nM = 0.001 nmol/mL.

I’d like to know more about subjects who didn’t respond to topical sulforaphane treatment. What happened in their lives to make them dead to an evolutionarily-selected antioxidant and anti-inflammatory signaling pathway that influences many other internal environmental signals? Guess we’ll have to wait for:

“Further clinical studies with an increased number of human subjects, longer treatment regimens, and additional body sites are needed to further assess the long-term effects of NRF2 activation on photoaging.”

See Eat broccoli sprouts for your skin! and Eat broccoli sprouts for your hair! for similar studies.


Owl before sunrise

Week 28 of Changing to a youthful phenotype with broccoli sprouts

Did a little math to end this 28th week of eating a clinically relevant weight of microwaved broccoli sprouts every day:

  • I changed the title of weekly updates after Week 7 as a result of A rejuvenation therapy and sulforaphane. Numbers used from its study: “Rats were injected four times on alternate days for 8 days.”
  • Study numbers in Part 2 of Rejuvenation therapy and sulforaphane regarding the new human-rat relative biological age epigenetic clock: “The maximum lifespan for rats and humans were set to 3.8 years and 122.5 years, respectively.” I’m at a similar percentage of species maximum lifespan as were the study’s treated subjects.
  • A human-equivalent multiplication factor that can be applied to a rat post-development time period is 122.5 / 3.8 = 32.2. An 8-day rat treatment period ≈ 258 human days, and 258 / 7 ≈ 37 weeks.

To paraphrase the study’s lead laboratory researcher’s An environmental signaling paradigm of aging paper, aging is a programmed series of life stages. A body clock reset described there and subsequently experimentally tested changed 30 measurements to earlier life stages.

A reset may not require more than what I’ve been doing since the end of March. Maybe 28 weeks hasn’t been long enough to find out?


See the below discussion for a different point of view. I don’t think relative rates of metabolism between species would be more accurate than other measures because of individual differences among humans.

A chart from Microwave broccoli seeds to create sulforaphane of 10 people’s metabolisms after ingesting 200 μmol (35 mg) sulforaphane provides an example. Individual sulforaphane metabolites (DTC is dithiocarbamates) peak plasma measurements ranged from 0.359 μmol to 2.032 μmol.

sulforaphane peak plasma


So we’re patient.

Eat broccoli sprouts to pivot your internal environment’s signals

Two 2020 reviews covered some aspects of a broccoli sprouts primary action – NRF2 signaling pathway activation:

“Full understanding of the properties of drug candidates rely partly on the identification, validation, and use of biomarkers to optimize clinical applications. This review focuses on results from clinical trials with four agents known to target NRF2 signaling in preclinical studies, and evaluates the successes and limitations of biomarkers focused on:

  • Expression of NRF2 target genes [AKR1, GCL, GST, HMOX1, NQO1] and others [HDAC, HSP];
  • Inflammation [COX-2, CRP, IL-1β, IL-6, IP-10, MCP-1, MIG, NF-κB, TNF-α] and oxidative stress [8-OHdG, Cys/CySS, GSH/GSSG] biomarkers;
  • Carcinogen metabolism and adduct biomarkers in unavoidably exposed populations; and
  • Targeted and untargeted metabolomics [HDL, LDL, TG].

No biomarkers excel at defining pharmacodynamic actions in this setting.

SFN [sulforaphane] seems to affect multiple downstream pathways associated with anti-inflammatory actions. NRF2 signaling may be but one pivotal pathway.

SFN is generally considered to be the most potent natural product inducer of Nrf2 signaling. Studies in which these actions are diminished or abrogated in parallel experiments in Nrf2-disrupted mice provide the strongest lines of evidence for a key role of this transcription factor in its actions.

It is equally evident that other modes of action contribute to the molecular responses to SFN in animals and humans. Such polypharmacy may well contribute to the efficacy of the agent in disease prevention and mitigation, but obfuscates the value of specific pharmacodynamic biomarkers in the clinical development and evaluation of SFN.”

https://www.mdpi.com/2076-3921/9/8/716/htm “Current Landscape of NRF2 Biomarkers in Clinical Trials”


Why do researchers still not use epigenetic clocks in sulforaphane clinical trials? Forty mentions of disease in this review, but no consideration of aging?

This was another example of how researchers – even when stuck in a paradigm they know doesn’t sufficiently explain their area (“No biomarkers excel”) – don’t investigate other associated research areas. Why not?

Here’s what Part 2 of Rejuvenation therapy and sulforaphane had to say to those stuck on biomarkers:

“While clinical biomarkers have obvious advantages (being indicative of organ dysfunction or disease), they are neither sufficiently mechanistic nor proximal to fundamental mechanisms of aging to serve as indicators of them. It has long been recognized that epigenetic changes are one of several primary hallmarks of aging.

DNA methylation epigenetic clocks capture aspects of biological age.”


The second review Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals also completely whiffed on epigenetic clocks. One mention of aging in this review, but it wasn’t of:

  • Citation 104 from Archives of Gerontology and Geriatrics; nor of
  • Citation 108 from the March 31, 2020, Aging journal; nor of
  • Citation 131 “Dietary epigenetics in cancer and aging.”

But epigenetic clock and aging associations were certainly in this review’s scope. For example, Citation 119 said:

“Nrf2 transcriptional activity declines with age, leading to age-related GSH loss among other losses associated with Nrf2-activated genes. This effect has implications, too, for decline in vascular function with age. Some of the age-related decline in function can be restored with Nrf2 activation by SFN.”

Why would people bother with phytochemicals (buzzword “compounds produced by plants”) unless to either ameliorate symptoms or address causes?

“Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals” doesn’t occur in just laboratory situations. It’s also part of daily life.

These reviewers were straight-forward with side effects for two of the first review’s four items:

“The best known NRF2 activator that has obtained clinical approval is dimethyl fumarate for the treatment of multiple sclerosis. However, it has several side effects, including allergic reactions and gastrointestinal disturbance. There are a few related agents in clinical trials, such as Bardoxolone and SFX-01, a synthetic derivative of sulforaphane, which also exhibit less than desirable outcomes.”