A strawman argument against epigenetic clocks

This 2019 review of epigenetic clocks by Washington cancer researchers repeatedly returned to an argument for randomness as a cause for aging and disease:

“A time-dependent stochastic event process, like epigenetic drift, could lead to cancer formation through the accumulation of random epigenetic alterations that, through chance, eventually alter epigenetic driver gene expression leading to a clone of cells destined to become cancer..

It is plausible that the stochastic process inherent in epigenetic drift can induce aberrant methylation events that accumulate in normal cells and eventually induce cancer formation.

Epigenetic drift relates to a biological process that changes the DNA methylome with age via stochastic gains or losses of DNA methylation. Epigenetic drift can be understood in terms of errors in DNA methylation maintenance during DNA-replication.

The phenomenon of (epi)genetic drift is generally associated with phenotypic neutrality.

For patients who develop cancer around age 80, the most likely initiation time for the founder adenoma cell is predicted to be very early in life, roughly between the ages 15 to 20 years. This unexpected and provocative finding suggests that the optimal age-range for prevention of colorectal cancer may be in adolescence and early adulthood (and ideally through lifelong) dietary and lifestyle interventions.”


The reviewers’ strawman arguments intentionally mischaracterized aspects of the epigenetic clock:

1. The epigenetic clock founder’s actual view on aging was in The epigenetic clock theory of aging:

“The proposed epigenetic clock theory of ageing views biological ageing as an unintended consequence of both developmental programmes and maintenance programmes, the molecular footprints of which give rise to DNAm age estimators.”

The reviewers omitted this intrinsic view of aging, which didn’t fit into their block labeled Extrinsic per the above graphic.

2. Another misrepresentation was:

“In contrast to epigenetic clocks, epigenetic drift refers to a stochastic process that involves both gains and losses of the methylation state of CpG dinucleotides over time.”

A reader of the original 2013 epigenetic clock study would understand that epigenetic clocks measure “both gains and losses of methylation” as in:

“The 193 positively and 160 negatively correlated CpGs get hypermethylated and hypomethylated with age, respectively.”

3. The reviewers omitted recent epigenetic clock significant developments. For example, there was no mention of the GrimAge study, although it was published before the review was submitted.

4. Epigenetic drift as the cause of aging and disease has abundant contrary evidence. The reviewers tossed in a little toward the end of their directed narrative:

“We found only a small number of drift-related CpG island-gene pairs for which drift correlated positively and significantly with gene expression.

The functional consequences of epigenetic drift need to be further elucidated.”

However, they didn’t acknowledge the elephant in the room: The epigenetic drift paradigm is generally inapplicable to humans because the vast majority of our cells don’t divide/proliferate!

https://cancerres.aacrjournals.org/content/early/2019/11/06/0008-5472.CAN-19-0924 “Epigenetic aging: more than just a clock when it comes to cancer” (not freely available)

Restrict information in the name of science?

A Stanford researcher was annoyed that we live in the 21st century, and advocated we return to previous centuries’ information-flow check valves of wise old men. No doubt the publishers of and subscribers to the Journal of the American Medical Association applauded the same old tired prescription.

Ten instances of the word “should” in the final two paragraphs provided ample evidence of the paper’s intent. Mirroring the current political climate, accusations made of others were items the accusers were guilty of themselves, such as:

“When these scientists act as investigators in the hundreds of observational studies that they publish, or as editors and peer reviewers in evaluating submissions from others, would they tolerate publishing analyses and funding proposals that might contradict their belief system?”

https://jamanetwork.com/journals/jama/fullarticle/2753533 “Neglecting Major Health Problems and Broadcasting Minor, Uncertain Issues in Lifestyle Science”


One of the paper’s references included an informative graphic:

“A histogram of the total number of rumor cascades in our data across the seven most frequent topical categories.”

https://science.sciencemag.org/content/359/6380/1146 “The spread of true and false news online”


I’ll borrow from the curation of another Stanford paper Online dating cuts out the middlemen in conclusion:

“Are there examples where it wouldn’t potentially improve a person’s life to choose their information sources? Friends, family, and other social groups – and religious, educational, and other institutions – have had their middlemen/guarantor time, and have been found lacking.

Make your own choices for your one precious life.”

Because..Harvard?

This 2019 Harvard review entitled “Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms” DETRACTED from science. Readers would become less-informed on the subject due to poorly-researched statements such as:

“Non-Mendelian inheritance, termed transgenerational epigenetic inheritance,”

which wasn’t an adequate definition of the transgenerational epigenetic inheritance term.


Contributing to the paper’s misdirection was the omission of Dr. Michael Skinner from any of the 349 cited references. Hard to believe that ignoring his research wasn’t intentional, since a PubMed “transgenerational” search sorted by Best Match displayed Dr. Skinner as author or coauthor in 3 of the first 20 results:

The abstract asserted:

“How this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear.”

However, Another important transgenerational epigenetic inheritance study – published well before the current paper – was one of Dr. Skinner’s Washington State University lab studies that CLEARLY demonstrated contrary evidence.

Who benefits from hijacking a scientific term and ignoring groundbreaking research?

Why did the two editors approve for publication a paper with obvious omissions and egregious errors? Because..Harvard?

https://www.sciencedirect.com/science/article/abs/pii/S0959438818302204 “Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms” (not freely available)

Wikipedia is a poor source of information on advanced glycation end products (AGEs)

A link to Wikipedia is usually on the first page of search results. The Wikipedia post on AGEs lacks the evidence that a reader may infer from its text.

For example, the second paragraph of the AGEs post, Dietary Sources, contained the following text and references:

  1. “However, only low molecular weight AGEs are absorbed through diet, and vegetarians have been found to have higher concentrations of overall AGEs compared to non-vegetarians. [4]
  2. Therefore it is unclear whether dietary AGEs contribute to disease and aging, or whether only endogenous AGEs (those produced in the body) matter. [5]
  3. This does not free diet from potentially negatively influencing AGE, but implicates dietary AGE may be less important than other aspects of diet that lead to elevated blood sugar levels and formation of AGEs. [4] [5]”

[4] https://www.sciencedirect.com/science/article/pii/S0278691513004444 “Advanced glycation end products in food and their effects on health” (not freely available) 2013 Denmark.

Please note on this linked page that a German researcher took the time to correct one bias of the Danish reviewers, citing evidence from his studies that:

“The deleterious effects of food-derived AGEs in subjects with type 2 diabetes mellitus are proven.”

[5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257625 “Dietary Advanced Glycation End Products and Aging” 2010 US.


Both of these references were reviews.

Unlike study researchers, reviewers aren’t bound to demonstrate evidence from tested hypotheses. Reviewers are free to:

  • Express their beliefs as facts;
  • Over/under emphasize study limitations; and
  • Disregard and misrepresent evidence as they see fit.

Reviewers also aren’t obligated to make post-publication corrections for their errors and distortions. For example, the Danes didn’t correct their review with any findings the German researcher presented.

As such, reviews can’t be cited for reliable evidence.


A sample of other problems with each of the Wikipedia sentences:

1. “However, only low molecular weight AGEs are absorbed through diet, and vegetarians have been found to have higher concentrations of overall AGEs compared to non-vegetarians. [4]”

The first part of sentence 1 came from the review’s abstract:

“Only LMW AGEs..may be absorbed from the gut and contribute to the body burden of AGEs.”

But the reviewers didn’t support their abstract’s statement with direct evidence from any study!

2. “Therefore it is unclear whether dietary AGEs contribute to disease and aging, or whether only endogenous AGEs (those produced in the body) matter. [5]”

The “therefore” of sentence 2 was misplaced. Sentence 1 didn’t attempt to explain whether “dietary AGEs contribute to disease and aging” or “only endogenous AGEs matter.”

Since sentence 2 wasn’t a consequence of sentence 1, the Wikipedia contributor(s) needed to support sentence 2 with evidence. Citing an “unclear” 2010 reference [5] ignored dozens of studies that provided better clarity.

3. “This does not free diet from potentially negatively influencing AGE, but implicates dietary AGE may be less important than other aspects of diet that lead to elevated blood sugar levels and formation of AGEs. [4] [5]”

Wikipedia contributors tend to cite irrelevant references rather than get flagged with “citation needed.” The value judgment of sentence 3 was an example of this intentionally misleading masquerade.

“Dietary AGE may be less important..” wasn’t unequivocally supported by studies referenced in either review, and didn’t represent an authoritative body of evidence. Contrast those weasel words with:

“The deleterious effects of food-derived AGEs in subjects with type 2 diabetes mellitus are proven.”

Good job, Wikipedia contributors! You used lower-quality reviews to promote misunderstandings that DETRACTED from science.


Wikipedia’s premise is that since the group knows more about any subject than does any individual, everyone is entitled to contribute. The results are usually incoherent narratives that often substitute opinions for evidence.

The second paragraph of the Exogenous section of the Wikipedia glycation post provided an example:

  • Assertions of the first and third sentences needed citations. Did the contributor(s) think these would be unexamined?
  • Someone contributed a cancer reference as the fourth sentence, although it had little to do with the preceding sentences.
  • The fifth sentence was informative on exogenous glycations and AGEs. An editor would have removed “recently” and “recent” though, because the cited source was dated 2005.

Infant DNA methylation and caregiving

This 2019 US human study attempted to replicate findings of animal studies that associated caregiver behavior with infant DNA methylation of the glucocorticoid receptor gene:

“Greater levels of maternal responsiveness and appropriate touch were related to less DNA methylation of specific regions in NR3c1 exon 1F, but only for females. There was no association with maternal responsiveness and appropriate touch or DNA methylation of NR3c1 exon 1F on prestress cortisol or cortisol reactivity. Our results are discussed in relation to programming models that implicate maternal care as an important factor in programing infant stress reactivity.”


The study had many undisclosed and a few disclosed limitations, one of which was:

“Our free-play session, while consistent with the length of free-play sessions in other studies, was short (5 min). It is unclear whether a longer length of time would have yielded significant different maternal responsiveness and appropriate touch data.”

The final sentence showed the study’s purpose was other than discovering factual evidence:

“Following replication of this work, it could ultimately be used in conjunction with early intervention, or home-visiting programs, to measure the strength of the intervention effect at the epigenetic level.”

https://onlinelibrary.wiley.com/doi/full/10.1002/imhj.21789 “DNA methylation of NR3c1 in infancy: Associations between maternal caregiving and infant sex” (not freely available)

Burying human transgenerational epigenetic evidence

The poor substitutes for evidence in this 2018 US study guaranteed that human transgenerational epigenetically inherited effects wouldn’t be found in the generations that followed after prenatal diethylstilbestrol (DES) exposure:

“A synthetic, nonsteroidal estrogen, DES was administered to pregnant women under the mistaken belief it would reduce pregnancy complications and losses. From the late 1930s through the early 1970s, DES was given to nearly two million pregnant women in the US alone.

Use of DES in pregnancy was discontinued after a seminal report showed a strong association with vaginal clear cell adenocarcinoma in prenatally exposed women. A recent analysis of the US National Cancer Institute (NCI) DES Combined Cohort Follow-up Study showed elevated relative risks of twelve adverse health outcomes.

We do not have sufficient data concerning the indication for DES in the grandmother to determine whether adverse pregnancy outcomes in the third generation might resemble those of their grandmothers. Fourth generation effects of prenatal exposures in humans have not been reported.”


This study had many elements in common with its wretched cited reference [25] “Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine” which is freely available at https://obgyn.onlinelibrary.wiley.com/doi/full/10.1111/1471-0528.12136.

That study’s Methods section showed:

  1. Its non-statistical data was almost all unverified self-reports by a self-selected sample of the F2 grandchildren, average age 37.
  2. No detailed physical measurements or samples were taken of the F2 grandchildren, or of their F1 parents, or of their F0 grandparents, all of which are required as baselines for any transgenerational epigenetic inheritance findings.
  3. No detailed physical measurements or samples were taken of the F3 great-grandchildren, which is the generation that may provide transgenerational evidence if the previous generations also have detailed physical baselines.

That study’s researchers drew enough participants (360) such that their statistics package allowed them to impute and assume into existence a LOT of data. But the scientific method constrained them to make factual statements of what the evidence actually showed. They admitted:

“In conclusion, we did not find a transgenerational effect of prenatal famine exposure on the health of grandchildren in this study.”


The current study similarly used the faulty methods 1-3 above to produce results such as:

“We do not have sufficient data concerning the indication for DES in the [F0] grandmother to determine whether adverse pregnancy outcomes in the [F2] third generation might resemble those of their grandmothers.

Fourth [F3] generation effects of prenatal exposures in humans have not been reported.

Zero studies of probably more than 10,000,000 F3 great-grandchildren of DES-exposed women just here in the US?

Who is against funding these studies? Who is afraid of what such studies may find?

One plausible hypothesis of these human studies would be of inherited effects that skipped generations! The rodent studies Epigenetic transgenerational inheritance mechanisms that lead to prostate disease and Epigenetic transgenerational inheritance of ovarian disease found inherited diseases that didn’t manifest until the F3 great-grand offspring:

The F3 generation can have disease while the F1 and F2 generations do not.

Ancestral exposure to toxicants is a risk factor that must be considered in the molecular etiology of ovarian disease.

For the current study:

  • What could be expected from a study design that didn’t include F3 women and men, which is the only generation that didn’t have direct DES exposure?
  • What a nonsensical study design to permit NON-evidence like educational level!

Human studies of possible intergenerational and transgenerational epigenetic inheritance are urgently needed. There will be abundant evidence to discover if researchers will take their fields seriously.

https://www.sciencedirect.com/science/article/pii/S0890623818304684 “Reproductive and Hormone-Related Outcomes in Women whose Mothers were Exposed in utero to Diethylstilbestrol (DES): A Report from the US National Cancer Institute DES Third Generation Study” (not freely available)

Hijacking the epigenetic clock paradigm

This 2018 German human study’s last sentence was:

“Additionally we found an association between DNAm [DNA methylation] age acceleration and rLTL [relative leukocyte telomere length], suggesting that this epigenetic clock, at least partially and possibly better than other epigenetic clocks, reflects biological age.”

Statements in the study that contradicted, qualified, and limited the concluding sentence included:

“The epigenetic clock seems to be mostly independent from the mitotic clock as measured by the rLTL.

It could be possible that associations are confounded due to short age ranges or non-continuous age distribution, as displayed in the BASE-II cohort (no participants between the age of 38 and 59 years). [see the below graphic]

The BASE-II is a convenience sample and participants have been shown to be positively selected with respect to education, health and cognition.

Samples in which DNAm age and chronological age differed more than three standard deviations from the mean were excluded (N=19).

While the original publication employed eight CpG sites for DNAm age estimation, we found that one of these sites did not significantly improve chronological age prediction in BASE-II. Thus, we reduced the number of sites considered to seven in the present study and adapted the algorithm to calculate DNAm age.

  • Horvath described a subset of 353 methylation sites predicting an individual’s chronological age with high accuracy..
  • Even though the available methods using more CpG sites to estimate DNAm age predict chronological age with higher accuracy..
  • It is not clear how much of the deviation between chronological age and DNAm age reflects measurement error/low number of methylation sites and which proportion can be attributed to biological age.

Due to the statistical method employed, we encountered a systematic deviation of DNAm age in our dataset.”


Findings that aren’t warranted by the data is an all-too-common problem with published research. This study illustrated how researcher hypothesis-seeking behavior – that disregarded what they knew or should have known – can combine with a statistics package to produce almost any finding.

It reminded me of A skin study that could have benefited from preregistration that made a similar methodological blunder:

The barbell shape of the subjects’ age distribution wouldn’t make sense if the researchers knew they were going to later use the epigenetic clock method.

The researchers did so, although the method’s instructive study noted:

“The standard deviation of age has a strong relationship with age correlation”

and provided further details in “The age correlation in a data set is determined by the standard deviation of age” section.

Didn’t the researchers, their organizations, and their sponsors realize that this study’s problematic design and performance could misdirect readers away from the valid epigenetic clock evidence they referenced? What purposes did it serve for them to publish this study?

https://academic.oup.com/biomedgerontology/advance-article-abstract/doi/10.1093/gerona/gly184/5076188 “Epigenetic clock and relative telomere length represent largely different aspects of aging in the Berlin Aging Study II (BASE-II)” (not freely available)