A research train wreck

I try to highlight research that advances science. Please humor a momentary break.

This 2020 study Effects of cooking methods on total isothiocyanate yield from cruciferous vegetables simulated microwaving broccoli to 210° C (410° F). These researchers knew or should have known that myrosinase inactivates at moderate temperatures, given studies published last century such as this with its “Thermal inactivation proceeded in the temperature range 30−60° C” finding. Without an active enzyme, no isothiocyanates are produced from cooking broccoli.

Incredibly, these researchers proved they knew their study detracted from science by citing Microwave broccoli to increase sulforaphane levels. That study found destructive effects on sulforaphane at temperatures above 60° C (140° F):


The sulforaphane (SFR) amount at HL70° on the right (broccoli heated to 70° C with a 950 W microwave operated on full power) was significantly less than uncooked broccoli (control) on the left!

“This work was supported by the National Cancer Institute.”

I haven’t found words to correspond with the coauthors. Egregious errors speak for themselves.

Politically correct about erucic acid and broccoli seeds

To follow up Caution on broccoli seed erucic acid content? this 2020 German review sympathetically analyzed government overreach on erucic acid contents in several foods:

“We measured exemplarily samples of rapeseed, mustard, further Brassicaceae and used the data to discuss possible consequences for consumers, producers and the food sector. This data was supplemented with possible analytical problems.

The new and lower erucic acid level in the EU is anticipated but will increase the need of an efficient control system by producers and food processors in order to avoid violations of erucic acid limit values and sale bans. The new proposed legislation will likely prompt some producers to reformulate their recipes, which can be achieved by lowering the fat content or by moving to mustard seeds with lower erucic acid content.

The amount of erucic acid in fish should not be neglected.”

https://www.sciencedirect.com/science/article/pii/S235236462030002X “Erucic acid in Brassicaceae and salmon – An evaluation of the new proposed limits of erucic acid in food” (not freely available)

The paper didn’t measure erucic acid percentages of total fatty acids in broccoli seeds. Also noticeably absent were analyses of animal studies performed a long time ago that formed the bases of current government actions.

Nothing to see here, move along. Much more effort was put into creating new health hazards for consumers, as if we should now be required to worry about eating salmon.

The 2017 position paper establishing erucic acid limits was excessively cited twelve times, such as for:

“Likewise, broccoli seeds were high in erucic acid but this fatty acid was not detected in edible parts of the vegetable. Hence, intake of erucic acid via these vegetables seems to be irrelevant.”

I mentioned problems in the poorly-evidenced 2002 study cited by this position paper. That researcher couldn’t be bothered to use just one broccoli cultivar for only three measurements, or disclose broccoli sprout age. But apparently it’s a fait accompli, elevated to an indisputable fact.

Despite many technical details, the current paper was politics. It detracted from science, with a cover story “in favor of consumer protection.” These researchers descended further into advocacy with “analysis” beginning with:

“Imagine (cruciferous) vegetables having an erucic acid content of 50% in the lipids.”

They did cause me to “imagine” eating hot dogs with mustard. But maybe that’s because baseball season is finally starting?

These vendors of broccoli seed powder don’t seem concerned about disclosing erucic acid content. What do you think?



Using oxytocin receptor gene methylation to pursue an agenda

A pair of 2019 Virginia studies involved human mother/infant subjects:

“We show that OXTRm [oxytocin receptor gene DNA methylation] in infancy and its change is predicted by maternal engagement and reflective of behavioral temperament.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795517 “Epigenetic dynamics in infancy and the impact of maternal engagement”

“Infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling.

Infant fNIRS [functional near-infrared spectroscopy] is limited to measuring responses from cerebral cortex. It is unknown whether OXTR is expressed in the cerebral cortex during prenatal and early postnatal human brain development.”

https://www.sciencedirect.com/science/article/pii/S187892931830207X “Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain”

Both studies had weak disclosures of limitations on their findings’ relevance and significance. The largest non-disclosed contrary finding was from the 2015 Early-life epigenetic regulation of the oxytocin receptor gene:

These results suggest that:

  • Blood Oxtr DNA methylation may reflect early experience of maternal care, and
  • Oxtr methylation across tissues is highly concordant for specific CpGs, but
  • Inferences across tissues are not supported for individual variation in Oxtr methylation.

That rat study found that blood OXTR methylation of 25 CpG sites couldn’t accurately predict the same 25 CpG sites’ OXTR methylation in each subject’s hippocampus, hypothalamus, and striatum (which includes the nucleus accumbens) brain areas. Without significant effects in these limbic system structures, there couldn’t be any associated behavioral effects.

But CpG site associations and correlations were deemed good in the two current studies because they cited:

“Recent work in prairie voles has found that both brain- and blood-derived OXTRm levels at these sites are negatively associated with gene expression in the brain and highly correlated with each other.”

https://www.sciencedirect.com/science/article/pii/S0306453018306103 “Early nurture epigenetically tunes the oxytocin receptor”

The 2018 prairie vole study – which included several of the same researchers as the two current studies – found four nucleus accumbens CpG sites that had high correlations to humans. Discarding one of these CpG sites allowed their statistics package to make a four-decimal place finding:

“The methylation state of the blood was also associated with the level of transcription in the brain at three of the four CpG sites..whole blood was capable of explaining 94.92% of the variance in Oxtr DNA methylation and 18.20% of the variance in Oxtr expression.”

Few limitations on the prairie vole study findings were disclosed. Like the two current studies, there wasn’t a limitation section that placed research findings into suitable contexts. So readers didn’t know researcher viewpoints on items such as:

  • What additional information showed that 3 of the 30+ million human CpGs accurately predicted specific brain OXTR methylation and expression from saliva OXTR methylation?
  • What additional information demonstrated how “measuring responses from cerebral cortex” although “it is unknown whether OXTR is expressed in the cerebral cortex” provided detailed and dependable estimates of limbic system CpG site OXTR methylation and expression?
  • Was the above 25-CpG study evidence considered?

Further contrast these three studies with a typical, four-point, 285-word limitation section of a study like Prenatal stress heightened adult chronic pain. The word “limit” appeared 6 times in that pain study, 3 times in the current fNIRS study, and 0 times in the current maternal engagement and cited prairie vole studies.

Frank interpretations of one’s own study findings to acknowledge limitations is one way researchers can address items upfront that will be questioned anyway. Such analyses also indicate a goal to advance science.

A strawman argument against epigenetic clocks

This 2019 review of epigenetic clocks by Washington cancer researchers ignored the elephant in the room: Their epigenetic drift paradigm is generally inapplicable to humans because the vast majority of our cells don’t divide/proliferate. They repeatedly returned to an argument for randomness as a cause for aging and disease:

“A time-dependent stochastic event process, like epigenetic drift, could lead to cancer formation through the accumulation of random epigenetic alterations that, through chance, eventually alter epigenetic driver gene expression leading to a clone of cells destined to become cancer.

It is plausible that the stochastic process inherent in epigenetic drift can induce aberrant methylation events that accumulate in normal cells and eventually induce cancer formation.

Epigenetic drift relates to a biological process that changes the DNA methylome with age via stochastic gains or losses of DNA methylation. Epigenetic drift can be understood in terms of errors in DNA methylation maintenance during DNA-replication.

The phenomenon of (epi)genetic drift is generally associated with phenotypic neutrality.

For patients who develop cancer around age 80, the most likely initiation time for the founder adenoma cell is predicted to be very early in life, roughly between the ages 15 to 20 years. This unexpected and provocative finding suggests that the optimal age-range for prevention of colorectal cancer may be in adolescence and early adulthood (and ideally through lifelong) dietary and lifestyle interventions.”

The reviewers’ strawman arguments intentionally mischaracterized aspects of the epigenetic clock:

1. The epigenetic clock founder’s actual view on aging was in The epigenetic clock theory of aging:

“The proposed epigenetic clock theory of ageing views biological ageing as an unintended consequence of both developmental programmes and maintenance programmes, the molecular footprints of which give rise to DNAm age estimators.”

The reviewers omitted this intrinsic view of aging, which didn’t fit into their block labeled Extrinsic per the above graphic.

2. Another misrepresentation was:

“In contrast to epigenetic clocks, epigenetic drift refers to a stochastic process that involves both gains and losses of the methylation state of CpG dinucleotides over time.”

A reader of the original 2013 epigenetic clock study would understand that epigenetic clocks measure “both gains and losses of methylation” as in:

“The 193 positively and 160 negatively correlated CpGs get hypermethylated and hypomethylated with age, respectively.”

3. The reviewers omitted recent epigenetic clock significant developments. For example, there was no mention of the GrimAge study, although it was published before the review was submitted.

4. Epigenetic drift as the cause of aging and disease has abundant contrary evidence. The reviewers tossed in a little toward the end of their directed narrative:

“We found only a small number of drift-related CpG island-gene pairs for which drift correlated positively and significantly with gene expression.

The functional consequences of epigenetic drift need to be further elucidated.”

However, they didn’t acknowledge the elephant in the room!

https://cancerres.aacrjournals.org/content/early/2019/11/06/0008-5472.CAN-19-0924 “Epigenetic aging: more than just a clock when it comes to cancer” (not freely available)

Restrict information in the name of science?

A Stanford researcher was annoyed that we live in the 21st century, and advocated we return to previous centuries’ information-flow check valves of wise old men. No doubt the publishers of and subscribers to the Journal of the American Medical Association applauded the same old tired prescription.

Ten instances of the word “should” in the final two paragraphs provided ample evidence of the paper’s intent. Mirroring the current political climate – projecting – accusations made of others were items the accusers were guilty of themselves, such as:

“When these scientists act as investigators in the hundreds of observational studies that they publish, or as editors and peer reviewers in evaluating submissions from others, would they tolerate publishing analyses and funding proposals that might contradict their belief system?”

https://jamanetwork.com/journals/jama/fullarticle/2753533 “Neglecting Major Health Problems and Broadcasting Minor, Uncertain Issues in Lifestyle Science”

One of the paper’s references included an informative graphic:

“A histogram of the total number of rumor cascades in our data across the seven most frequent topical categories.”

https://science.sciencemag.org/content/359/6380/1146 “The spread of true and false news online”

I’ll borrow from the curation of another Stanford paper Online dating cuts out the middlemen in conclusion:

“Are there examples where it wouldn’t potentially improve a person’s life to choose their information sources? Friends, family, and other social groups – and religious, educational, and other institutions – have had their middlemen/guarantor time, and have been found lacking.

Make your own choices for your one precious life.”


This 2019 Harvard review entitled “Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms” DETRACTED from science. Readers would become less-informed on the subject due to poorly-researched statements such as:

“Non-Mendelian inheritance, termed transgenerational epigenetic inheritance,”

which wasn’t an adequate definition of the transgenerational epigenetic inheritance term.

Contributing to the paper’s misdirection was the omission of Dr. Michael Skinner from any of the 349 cited references. Hard to believe that ignoring his research wasn’t intentional, since a PubMed “transgenerational” search sorted by Best Match displayed Dr. Skinner as author or coauthor in 3 of the first 20 results:

The abstract asserted:

“How this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear.”

However, Another important transgenerational epigenetic inheritance study – published well before the current paper – was one of Dr. Skinner’s Washington State University lab studies that CLEARLY demonstrated contrary evidence.

Who benefits from hijacking a scientific term and ignoring groundbreaking research?

Why did the two editors approve for publication a paper with obvious omissions and egregious errors? Because..Harvard?

https://www.sciencedirect.com/science/article/abs/pii/S0959438818302204 “Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms” (not freely available)

Wikipedia is a poor source of information on advanced glycation end products (AGEs)

A link to Wikipedia is usually on the first page of search results. The Wikipedia post on AGEs lacks the evidence that a reader may infer from its text.

For example, the second paragraph of the AGEs post, Dietary Sources, contained the following text and references:

  1. “However, only low molecular weight AGEs are absorbed through diet, and vegetarians have been found to have higher concentrations of overall AGEs compared to non-vegetarians. [4]
  2. Therefore it is unclear whether dietary AGEs contribute to disease and aging, or whether only endogenous AGEs (those produced in the body) matter. [5]
  3. This does not free diet from potentially negatively influencing AGE, but implicates dietary AGE may be less important than other aspects of diet that lead to elevated blood sugar levels and formation of AGEs. [4] [5]”

[4] https://www.sciencedirect.com/science/article/pii/S0278691513004444 “Advanced glycation end products in food and their effects on health” (not freely available) 2013 Denmark.

Please note on this linked page that a German researcher took the time to correct one bias of the Danish reviewers, citing evidence from his studies that:

“The deleterious effects of food-derived AGEs in subjects with type 2 diabetes mellitus are proven.”

[5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257625 “Dietary Advanced Glycation End Products and Aging” 2010 US.

Both of these references were reviews.

Unlike study researchers, reviewers aren’t bound to demonstrate evidence from tested hypotheses. Reviewers are free to:

  • Express their beliefs as facts;
  • Over/under emphasize study limitations; and
  • Disregard and misrepresent evidence as they see fit.

Reviewers also aren’t obligated to make post-publication corrections for their errors and distortions. For example, the Danes didn’t correct their review with any findings the German researcher presented.

As such, reviews can’t be cited for reliable evidence.

A sample of other problems with each of the Wikipedia sentences:

1. “However, only low molecular weight AGEs are absorbed through diet, and vegetarians have been found to have higher concentrations of overall AGEs compared to non-vegetarians. [4]”

The first part of sentence 1 came from the review’s abstract:

“Only LMW AGEs..may be absorbed from the gut and contribute to the body burden of AGEs.”

But the reviewers didn’t support their abstract’s statement with direct evidence from any study!

2. “Therefore it is unclear whether dietary AGEs contribute to disease and aging, or whether only endogenous AGEs (those produced in the body) matter. [5]”

The “therefore” of sentence 2 was misplaced. Sentence 1 didn’t attempt to explain whether “dietary AGEs contribute to disease and aging” or “only endogenous AGEs matter.”

Since sentence 2 wasn’t a consequence of sentence 1, the Wikipedia contributor(s) needed to support sentence 2 with evidence. Citing an “unclear” 2010 reference [5] ignored dozens of studies that provided better clarity.

3. “This does not free diet from potentially negatively influencing AGE, but implicates dietary AGE may be less important than other aspects of diet that lead to elevated blood sugar levels and formation of AGEs. [4] [5]”

Wikipedia contributors tend to cite irrelevant references rather than get flagged with “citation needed.” The value judgment of sentence 3 was an example of this intentionally misleading masquerade.

“Dietary AGE may be less important..” wasn’t unequivocally supported by studies referenced in either review, and didn’t represent an authoritative body of evidence. Contrast those weasel words with:

“The deleterious effects of food-derived AGEs in subjects with type 2 diabetes mellitus are proven.”

Good job, Wikipedia contributors! You used lower-quality reviews to promote misunderstandings that DETRACTED from science.

Wikipedia’s premise is that since the group knows more about any subject than does any individual, everyone is entitled to contribute. The results are usually incoherent narratives that often substitute opinions for evidence.

The second paragraph of the Exogenous section of the Wikipedia glycation post provided an example:

  • Assertions of the first and third sentences needed citations. Did the contributor(s) think these would be unexamined?
  • Someone contributed a cancer reference as the fourth sentence, although it had little to do with the preceding sentences.
  • The fifth sentence was informative on exogenous glycations and AGEs. An editor would have removed “recently” and “recent” though, because the cited source was dated 2005.

Infant DNA methylation and caregiving

This 2019 US human study attempted to replicate findings of animal studies that associated caregiver behavior with infant DNA methylation of the glucocorticoid receptor gene:

“Greater levels of maternal responsiveness and appropriate touch were related to less DNA methylation of specific regions in NR3c1 exon 1F, but only for females. There was no association with maternal responsiveness and appropriate touch or DNA methylation of NR3c1 exon 1F on prestress cortisol or cortisol reactivity. Our results are discussed in relation to programming models that implicate maternal care as an important factor in programing infant stress reactivity.”

The study had many undisclosed and a few disclosed limitations, one of which was:

“Our free-play session, while consistent with the length of free-play sessions in other studies, was short (5 min). It is unclear whether a longer length of time would have yielded significant different maternal responsiveness and appropriate touch data.”

The final sentence showed the study’s purpose was other than discovering factual evidence:

“Following replication of this work, it could ultimately be used in conjunction with early intervention, or home-visiting programs, to measure the strength of the intervention effect at the epigenetic level.”

https://onlinelibrary.wiley.com/doi/full/10.1002/imhj.21789 “DNA methylation of NR3c1 in infancy: Associations between maternal caregiving and infant sex” (not freely available)

Burying human transgenerational epigenetic evidence

The poor substitutes for evidence in this 2018 US study guaranteed that human transgenerational epigenetically inherited effects wouldn’t be found in the generations that followed after prenatal diethylstilbestrol (DES) exposure:

“A synthetic, nonsteroidal estrogen, DES was administered to pregnant women under the mistaken belief it would reduce pregnancy complications and losses. From the late 1930s through the early 1970s, DES was given to nearly two million pregnant women in the US alone.

Use of DES in pregnancy was discontinued after a seminal report showed a strong association with vaginal clear cell adenocarcinoma in prenatally exposed women. A recent analysis of the US National Cancer Institute (NCI) DES Combined Cohort Follow-up Study showed elevated relative risks of twelve adverse health outcomes.

We do not have sufficient data concerning the indication for DES in the grandmother to determine whether adverse pregnancy outcomes in the third generation might resemble those of their grandmothers. Fourth generation effects of prenatal exposures in humans have not been reported.”

This study had many elements in common with its wretched cited reference [25] “Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine” which is freely available at https://obgyn.onlinelibrary.wiley.com/doi/full/10.1111/1471-0528.12136.

That study’s Methods section showed:

  1. Its non-statistical data was almost all unverified self-reports by a self-selected sample of the F2 grandchildren, average age 37.
  2. No detailed physical measurements or samples were taken of the F2 grandchildren, or of their F1 parents, or of their F0 grandparents, all of which are required as baselines for any transgenerational epigenetic inheritance findings.
  3. No detailed physical measurements or samples were taken of the F3 great-grandchildren, which is the generation that may provide transgenerational evidence if the previous generations also have detailed physical baselines.

That study’s researchers drew enough participants (360) such that their statistics package allowed them to impute and assume into existence a LOT of data. But the scientific method constrained them to make factual statements of what the evidence actually showed. They admitted:

“In conclusion, we did not find a transgenerational effect of prenatal famine exposure on the health of grandchildren in this study.”

The current study similarly used the faulty methods 1-3 above to produce results such as:

“We do not have sufficient data concerning the indication for DES in the [F0] grandmother to determine whether adverse pregnancy outcomes in the [F2] third generation might resemble those of their grandmothers.

Fourth [F3] generation effects of prenatal exposures in humans have not been reported.

Zero studies of probably more than 10,000,000 F3 great-grandchildren of DES-exposed women just here in the US?

Who is against funding these studies? Who is afraid of what such studies may find?

One plausible hypothesis of these human studies would be of inherited effects that skipped generations! The rodent studies Epigenetic transgenerational inheritance mechanisms that lead to prostate disease and Epigenetic transgenerational inheritance of ovarian disease found inherited diseases that didn’t manifest until the F3 great-grand offspring:

The F3 generation can have disease while the F1 and F2 generations do not.

Ancestral exposure to toxicants is a risk factor that must be considered in the molecular etiology of ovarian disease.

For the current study:

  • What could be expected from a study design that didn’t include F3 women and men, which is the only generation that didn’t have direct DES exposure?
  • What a nonsensical study design to permit NON-evidence like educational level!

Human studies of possible intergenerational and transgenerational epigenetic inheritance are urgently needed. There will be abundant evidence to discover if researchers will take their fields seriously.

https://www.sciencedirect.com/science/article/pii/S0890623818304684 “Reproductive and Hormone-Related Outcomes in Women whose Mothers were Exposed in utero to Diethylstilbestrol (DES): A Report from the US National Cancer Institute DES Third Generation Study” (not freely available)

Hijacking the epigenetic clock paradigm

This 2018 German human study’s last sentence was:

“Additionally we found an association between DNAm [DNA methylation] age acceleration and rLTL [relative leukocyte telomere length], suggesting that this epigenetic clock, at least partially and possibly better than other epigenetic clocks, reflects biological age.”

Statements in the study that contradicted, qualified, and limited the concluding sentence included:

“The epigenetic clock seems to be mostly independent from the mitotic clock as measured by the rLTL.

It could be possible that associations are confounded due to short age ranges or non-continuous age distribution, as displayed in the BASE-II cohort (no participants between the age of 38 and 59 years). [see the below graphic]

The BASE-II is a convenience sample and participants have been shown to be positively selected with respect to education, health and cognition.

Samples in which DNAm age and chronological age differed more than three standard deviations from the mean were excluded (N=19).

While the original publication employed eight CpG sites for DNAm age estimation, we found that one of these sites did not significantly improve chronological age prediction in BASE-II. Thus, we reduced the number of sites considered to seven in the present study and adapted the algorithm to calculate DNAm age.

  • Horvath described a subset of 353 methylation sites predicting an individual’s chronological age with high accuracy..
  • Even though the available methods using more CpG sites to estimate DNAm age predict chronological age with higher accuracy..
  • It is not clear how much of the deviation between chronological age and DNAm age reflects measurement error/low number of methylation sites and which proportion can be attributed to biological age.

Due to the statistical method employed, we encountered a systematic deviation of DNAm age in our dataset.”

Findings that aren’t warranted by the data is an all-too-common problem with published research. This study illustrated how researcher hypothesis-seeking behavior – that disregarded what they knew or should have known – can combine with a statistics package to produce almost any finding.

It reminded me of A skin study that could have benefited from preregistration that made a similar methodological blunder:

The barbell shape of the subjects’ age distribution wouldn’t make sense if the researchers knew they were going to later use the epigenetic clock method.

The researchers did so, although the method’s instructive study noted:

“The standard deviation of age has a strong relationship with age correlation”

and provided further details in “The age correlation in a data set is determined by the standard deviation of age” section.

Didn’t the researchers, their organizations, and their sponsors realize that this study’s problematic design and performance could misdirect readers away from the valid epigenetic clock evidence they referenced? What purposes did it serve for them to publish this study?

https://academic.oup.com/biomedgerontology/advance-article-abstract/doi/10.1093/gerona/gly184/5076188 “Epigenetic clock and relative telomere length represent largely different aspects of aging in the Berlin Aging Study II (BASE-II)” (not freely available)

Going off the rails with the biomarker paradigm

This 2018 US government rodent study used extreme dosages to achieve its directed goals of demonizing nicotine and extolling the biomarker paradigm:

“This study examined whether adolescent nicotine exposure alters adult hippocampus-dependent learning, involving persistent changes in hippocampal DNA methylation and if choline, a dietary methyl donor, would reverse and mitigate these alterations.

Mice were chronically treated with nicotine (12.6mg/kg/day) starting at post-natal day 23 (pre-adolescent), p38 (late adolescent), or p54 (adult) for 12 days followed by a 30-day period during which they consumed either standard chow or chow supplemented with choline (9g/kg).

Our gene expression analyses support this model and point to two particular genes involved in chromatin remodeling, Smarca2 and Bahcc1. Both Smarca2 and Bahcc1 showed a similar inverse correlation pattern between promoter methylation and gene expression.

Our findings support a role for epigenetic modification of hippocampal chromatin remodeling genes in long-term learning deficits induced by adolescent nicotine and their amelioration by dietary choline supplementation.”

Let’s use the average weight of a US adult male – published by the US Centers for Disease Control as 88.8 kg – to compare the study’s dosages with human equivalents:

  1. Nicotine at “12.6mg/kg/day” x 88.8 kg = 1119 mg. The estimated lower limit of a lethal dose of nicotine has been reported as between 500 and 1000 mg!
  2. Choline at “9g/kg” x 88.8 kg = 799 g. The US National Institutes of Health published the Tolerable Upper Intake Levels for Choline as 3.5 g!!

Neither of these dosages are even remotely connected to human realities:

  1. The human-equivalent dosage of nicotine used in this study would probably kill an adult human before the end of 12 days.
  2. What effects would an adult human suffer from exceeding the choline “Tolerable Upper Intake Level” BY 228 TIMES for 30 days?

Isn’t the main purpose of animal studies to help humans? What’s the justification for performing animal studies simply to promote an agenda?

A funding source of this study was National Institute on Drug Abuse (NIDA) Identification of Biomarkers for Nicotine Addiction award (T-DA-1002 MG). Has the biomarker paradigm been institutionalized to the point where research proposals that don’t have biomarkers as goals aren’t funded?

https://www.sciencedirect.com/science/article/pii/S107474271830193X “Choline ameliorates adult learning deficits and reverses epigenetic modification of chromatin remodeling factors related to adolescent nicotine exposure” (not freely available)

A book review of “Neuroepigenetics and Mental Illness”

A 2018 online book “Neuroepigenetics and Mental Illness” was published at https://www.sciencedirect.com/bookseries/progress-in-molecular-biology-and-translational-science/vol/158/suppl/C (not freely available). Three chapters are reviewed here, with an emphasis on human studies:

Actually, I won’t waste my time or your time with what I planned to do. The lack of scientific integrity and ethics displayed by the book’s publisher, editor, and contributors in the below chapter spoke volumes.

How can the information in any other chapter of this book be trusted?

“Chapter Twelve: Transgenerational Epigenetics of Traumatic Stress”

This chapter continued propagating a transgenerational meme that had more to do with extending paradigms than advancing science. The meme is that there are adequately evidenced transgenerational epigenetic inheritance human results.

As noted in Epigenetic variations in metabolism, there aren’t any published human studies that provide incontrovertible evidence from the F0 great-grandparents, F1 grandparents, F2 parents, and F3 children to confirm definitive transgenerational epigenetic inheritance causes and effects. Researchers urgently need to do this human research, and stop pretending that it’s already been done.

How did the book’s editor overlook what this chapter admitted?

“Literature about the inheritance of the effects of traumatic stress in humans has slowly accumulated in the past decade. However, it remains thin and studies in humans also generally lack clear “cause and effect” association, mechanistic explanations or germline assessment.”

Were the publisher and editor determined to keep the chapter heading – and the reviewers determined to add another entry to their CVs – in the face of this weasel-wording?

“In conclusion, although less studied from a mechanistic point of view, inter- and possibly transgenerational inheritance of the effects of traumatic stress is supported by empirical evidence in humans.”

See the comments below for one example of the poor substitutes for evidence that propagators of this transgenerational meme use to pronounce human transgenerational epigenetic inheritance a fait accompli. Researchers supporting the meme and its funding pipeline most certainly know that not only this one example, but also ALL human transgenerational epigenetic inheritance studies:

“Lack clear “cause and effect” association, mechanistic explanations or germline assessment.”

Lack of scientific integrity is one reason why such human research hasn’t been undertaken with the urgency it deserves. Propagating this meme is unethical, and adversely affects anyone who values evidence-based research.

A disturbance in the paradigm of child abuse

The principal way science advances is through the principle Einstein expressed as:

“No amount of experimentation can ever prove me right; a single experiment can prove me wrong.”

Members of the scientific community and of the public should be satisfied that the scientific process is working well when hypotheses are discarded due to nonconfirming evidence. Researchers should strive to develop evidence that rejects paradigms, and be lauded for their efforts.

The opposite took place with this 2018 commentary on two studies where the evidence didn’t confirm current biases. I curated one of these studies in DNA methylation and childhood adversity.

The commentators’ dismissive tone was set in the opening paragraph:

“Is early exposure to adversity associated with a genetic or an epigenetic signature? At first glance, two articles in this issue -..and the other from Marzi et al., who measured genome-wide DNA methylation in a prospective twin cohort assessed at age 18 – appear to say that it is not.”

The two commentators, one of whom was a coauthor of Manufacturing PTSD evidence with machine learning, went on to protect their territory. Never mind the two studies’ advancement of science that didn’t coincide with the commentators’ vested interests.

My main concern with the curated study was that although the children had been studied at ages 5, 7, 10, 12, and 18, the parents had never been similarly evaluated! The researchers passed up an opportunity to develop the parents as a F0 generation for understanding possible human transgenerational inherited epigenetic causes and effects.

The curated study focused on the children’s intergenerational epigenetic effects. However, animal studies have often demonstrated transgenerational effects that skip over the F1 generation children! For example:

https://ajp.psychiatryonline.org/doi/pdf/10.1176/appi.ajp.2018.18020156 “Considering the Genetic and Epigenetic Signature of Early Adversity Within a Biopsychosocial Framework” (not freely available)

How to hijack science: Ignore its intent and focus on the 0.0001%

This 2018 Belgian review hijacked science to further an agenda:

“We addressed this issue at the LATSIS Symposium ‘Transgenerational Epigenetic Inheritance: Impact for Biology and Society’, in Zürich, 28–30 August 2017, and here provide important arguments why environmental and lifestyle-related exposures in young men should be studied.”

The reviewer DETRACTED from science in the studied area – transgenerational epigenetic inheritance – by ignoring its intent. As shown by A self-referencing study of transgenerational epigenetic inheritance which I also curated today, the purpose of such animal studies is to find the mechanisms in order to help humans.

Putting that study’s graphic into human terms, F3 male great-grandchildren may be adversely affected by their F0 great-grandmothers being poisoned while pregnant with their F1 grandfathers, who – with their F2 fathers – may have also been adversely affected.

What the reviewer asserted without proof:

“The importance of maternal lifestyle, diet and other environmental exposures before and during gestation period is well recognized.”

is NOT TRUE for the studied area.

The evidence disproving this assertion is that NO HUMAN STUDIES scientifically demonstrating causes for transgenerational epigenetic inheritance effects have been published!


There’s a huge gap between “The importance..is well recognized” of anything regarding transgenerational epigenetic inheritance and ZERO human studies.

Why has no one published scientifically adequate human evidence to demonstrate “Transgenerational Epigenetic Inheritance: Impact for Biology and Society” effects on ALL of the F1, F2, and F3 human generations as consequences “of maternal lifestyle, diet and other environmental exposures before and during gestation period?” What are we waiting for?

The reviewer said “young men should be studied” but said nothing about resolving bottlenecks in funding human research of the studied area. Do researchers even have opportunities to make a NON-AGENDA-DRIVEN difference in this field?

With ZERO published human studies, transgenerational epigenetic inheritance research can’t be recharacterized into a female vs. male agenda. The reviewer’s attempt to do so diminished the importance of research into human critical development periods.

This agenda’s viewpoint ignored human correlates of evidence from animal studies like The lifelong impact of maternal postpartum behavior:

“The defect in maternal care induced by gestational stress programs the development of the offspring.”

Will the reviewer’s suggested interventions – such as changing an adult’s lifestyle a long time after their development was altered – somehow make up for what went wrong early in their life, even before they were born?

With the evidence from animal studies such as:

is there any doubt that similar mechanisms may be involved in humans, and that human phenotypes may likewise be intergenerationally and/or transgenerationally transmitted?

The reviewer asserted:

“Studying humans is challenging, because of ethical reasons”

But do “ethical reasons” prohibit non-instigating human studies of stress, the intergenerationally and transgenerationally transmitted effects of which seem to be ubiquitous among humans?

In The Not-Invented-Here syndrome I pointed out another problem that the reviewer’s agenda is less than helpful in resolving:

“How can animal studies like the current study help humans when their models don’t replicate common human conditions? This failure to use more relevant models has follow-on effects such as human intergenerational and transgenerational epigenetic inheritance being denigrated due to insufficient evidence.”

I’ll repeat What is a father’s role in epigenetic inheritance? in closing:

“The review focused on 0.0001% of the prenatal period for what matters with the human male – who he was at the time of a Saturday night drunken copulation – regarding intergenerational and transgenerational epigenetic inheritance of metabolic diseases.

The human female’s role – who she was at conception AND THEN what she does or doesn’t do during the remaining 99.9999% of the prenatal period to accommodate the fetus and prevent further adverse epigenetic effects from being intergenerationally and transgenerationally transmitted – wasn’t discussed.

Who benefits from this agenda’s narrow focus?”

https://academic.oup.com/eep/article/4/2/dvy007/4987171 “POHaD: why we should study future fathers”

Resiliency in stress responses

This 2018 US Veterans Administration review subject was resiliency and stress responses:

Neurobiological and behavioral responses to stress are highly variable. Exposure to a similar stressor can lead to heterogeneous outcomes — manifesting psychopathology in one individual, but having minimal effect, or even enhancing resilience, in another.

We highlight aspects of stress response modulation related to early life development and epigenetics, selected neurobiological and neurochemical systems, and a number of emotional, cognitive, psychosocial, and behavioral factors important in resilience.”

The review cited studies I’ve previously curated:

There were two things I didn’t understand about this review. The first was why the paper isn’t freely available. It’s completely paid for by the US taxpayer, and no copyright is claimed. I recommend contacting the authors for a copy.

The second was why the VA hasn’t participated in either animal or human follow-on studies to the 2015 Northwestern University GABAergic mechanisms regulated by miR-33 encode state-dependent fear. That study’s relevance to PTSD, this review’s subject, and the VA’s mission is too important to ignore. For example:

“Fear-inducing memories can be state dependent, meaning that they can best be retrieved if the brain states at encoding and retrieval are similar.

“It’s difficult for therapists to help these patients,” Radulovic said, “because the patients themselves can’t remember their traumatic experiences that are the root cause of their symptoms.”

The findings imply that in response to traumatic stress, some individuals, instead of activating the glutamate system to store memories, activate the extra-synaptic GABA system and form inaccessible traumatic memories.”

I curated the research in A study that provided evidence for basic principles of Primal Therapy. These researchers have published several papers since then. Here are the abstracts from three of them:

Experimental Methods for Functional Studies of microRNAs in Animal Models of Psychiatric Disorders

“Pharmacological treatments for psychiatric illnesses are often unsuccessful. This is largely due to the poor understanding of the molecular mechanisms underlying these disorders. We are particularly interested in elucidating the mechanism of affective disorders rooted in traumatic experiences.

To date, the research of mental disorders in general has focused on the causal role of individual genes and proteins, an approach that is inconsistent with the proposed polygenetic nature of these disorders. We recently took an alternative direction, by establishing the role of miRNAs in the coding of stress-related, fear-provoking memories.

Here we describe in detail our work on the role of miR-33 in state-dependent learning, a process implicated in dissociative amnesia, wherein memories formed in a certain brain state can best be retrieved if the brain is in the same state. We present the specific experimental approaches we apply to study the role of miRNAs in this model and demonstrate that miR-33 regulates the susceptibility to state-dependent learning induced by inhibitory neurotransmission.”

Neurobiological mechanisms of state-dependent learning

“State-dependent learning (SDL) is a phenomenon relating to information storage and retrieval restricted to discrete states. While extensively studied using psychopharmacological approaches, SDL has not been subjected to rigorous neuroscientific study.

Here we present an overview of approaches historically used to induce SDL, and highlight some of the known neurobiological mechanisms, in particular those related to inhibitory neurotransmission and its regulation by microRNAs (miR).

We also propose novel cellular and circuit mechanisms as contributing factors. Lastly, we discuss the implications of advancing our knowledge on SDL, both for most fundamental processes of learning and memory as well as for development and maintenance of psychopathology.”

Neurobiological correlates of state-dependent context fear

“Retrieval of fear memories can be state-dependent, meaning that they are best retrieved if the brain states at encoding and retrieval are similar. Such states can be induced by activating extrasynaptic γ-aminobutyric acid type A receptors (GABAAR) with the broad α-subunit activator gaboxadol. However, the circuit mechanisms and specific subunits underlying gaboxadol’s effects are not well understood.

Here we show that gaboxadol induces profound changes of local and network oscillatory activity, indicative of discoordinated hippocampal-cortical activity, that were accompanied by robust and long-lasting state-dependent conditioned fear. Episodic memories typically are hippocampus-dependent for a limited period after learning, but become cortex-dependent with the passage of time.

In contrast, state-dependent memories continued to rely on hippocampal GABAergic mechanisms for memory retrieval. Pharmacological approaches with α- subunit-specific agonists targeting the hippocampus implicated the prototypic extrasynaptic subunits (α4) as the mediator of state-dependent conditioned fear.

Together, our findings suggest that continued dependence on hippocampal rather than cortical mechanisms could be an important feature of state-dependent memories that contributes to their conditional retrieval.”

Here’s an independent 2017 Netherlands/UC San Diego review that should bring these researchers’ efforts to the VA’s attention:

MicroRNAs in Post-traumatic Stress Disorder

“Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma.

Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes.

Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.”

Here’s a 2017 Netherlands human study that similarly merits the US Veterans Administration’s attention:

Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans

“Posttraumatic stress disorder (PTSD) affects many returning combat veterans, but underlying biological mechanisms remain unclear. In order to compare circulating micro RNA (miRNA) of combat veterans with and without PTSD, peripheral blood from 24 subjects was collected following deployment, and isolated miRNA was sequenced.

PTSD was associated with 8 differentially expressed miRNA. Pathway analysis shows that PTSD is related to the axon guidance and Wnt signaling pathways, which work together to support neuronal development through regulation of growth cones. PTSD is associated with miRNAs that regulate biological functions including neuronal activities, suggesting that they play a role in PTSD symptomatology.”

See the below comments for reasons why I downgraded this review’s rating.

https://link.springer.com/article/10.1007/s11920-018-0887-x “Stress Response Modulation Underlying the Psychobiology of Resilience” (not freely available)