Vitamin K-dependent proteins

This 2020 review focused on three Vitamin K-dependent proteins (VKDPs):

“We summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples:

  • Carboxylated Gas 6 and GRP effectively protect blood vessels from calcification;
  • Gas 6 protects from acute kidney injury and is involved in chronic kidney disease;
  • GRP contributes to bone homeostasis and delays progression of osteoarthritis; and
  • Periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction.

IJMM-47-03-4835-g00

The ‘+’ refers to promotion and ‘-‘ refers to inhibition. Green represents Gas 6 physiological effects and red represents its pathological effects.

  • Gas 6 resists vascular calcification: i) Gas 6 promotes proliferation and migration of endothelial progenitor cells (EPCs); ii) Gas 6 inhibits apoptosis and senescence of vascular smooth muscle cells (VSMCs) by binding Tyro3, Axl and Mer (TAM) receptors; iii) Gas 6 decreases expression of inflammatory factors, including TNF-α and ICAM-1.
  • Gas 6 protects from acute kidney injury: i) Gas 6 significantly reduces creatinine and blood urea nitrogen; ii) Gas 6 enhances macrophages to uptake apoptotic cells; iii) Gas 6 reduces the expression of pro-inflammatory cytokines, such as IL-1β.
  • Gas 6 assists tumor progression: i) Gas 6 is necessary for survival, proliferation and growth of tumor cells; ii) Gas 6 contributes to drug resistance and tumor angiogenesis; iii) Gas 6 negatively regulates tumor immunity.

Numerous physiological benefits of vitamin K2 have been identified, such as anti-vascular calcification, glycemic control, and lipid-lowering effects. However, some questions about relationships between vitamin K2 and cancers remain unsolved. VKDPs are expected to be biomarkers for many diseases.”

https://www.spandidos-publications.com/10.3892/ijmm.2020.4835?text=fulltext “Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review)”


This review’s VKPD biomarkers included:

  • Vascular calcification;
  • Asthma;
  • Bronchial obstruction;
  • Diabetic nephropathy; and
  • Fracture risk.

Elaborating on this last item:

“In a cohort of 607 postmenopausal women from France that were followed up for 7 years, a positive correlation between serum periostin and fracture risk was observed. The association was independent of bone mineral density and prior fractures, indicating that periostin is an independent predictive marker of fracture risk.”

As pointed out in Chronological age by itself is an outdated clinical measurement, bone mineral density is one of several historical measurements that were selected for their relative convenience instead of chosen for their efficacy. We’re in a different century now.

PXL_20210628_094545802

Part 2 of Week 63 of Changing to a youthful phenotype with sprouts

To follow up Part 1, received Thursday’s lab results yesterday. Downloaded the workbook at https://michaellustgarten.com/2019/09/09/quantifying-biological-age/ and filled it in. Went to http://aging.ai/, selected 3.0, and entered values.

My starting point’s calculated values were:

biological age 1

A biological age snapshot from a year ago‘s video included optimal ranges:

optimizing biological age

Values in these optimal ranges were:

  • Albumin: 46;
  • Creatinine: 1.07;
  • high-sensitivity C-reactive protein: 0.24;
  • Red cell distribution width: 11.8; and
  • White blood cell count: 4.6.

I have some work to do on the other four. Good health while aging seldom happens on its own.

Reading more about Phenotypic age and its biological relationships. It definitely doesn’t mean I can do things I did 9.5 years ago like play golf and Frisbee football on the weekends.

I’d probably use DNAm PhenoAge to compare with other epigenetic clocks. Not sure how to use Aging.ai 3.0 calculations.

Sometime over the past year, Labcorp changed their adult alkaline phosphatase reference range from 39-117 to 48-121. Don’t know whether alkaline phosphatase’s optimal range will change with Labcorp’s new range, since < 48 was based on all-cause-mortality data.

PXL_20210622_093759263

Eat whole oats for your gut microbiota

Two papers on whole grains, with the first a 2021 review:

“Whole grains are more complex than refined grains and are promoted as part of a healthy and sustainable diet, mainly because the contribution of indigestible carbohydrates, and their co-passenger nutrients, is significantly higher. Changing composition and availability of grain carbohydrates and phytochemicals during processing may positively affect gut microbiota and improve health.

Processing is required for virtually all cereals that humans consume. However, eliminating bran has resulted in grain-based products that contribute to a lower-quality diet.

Currently, there are no specific recommendations on relative proportions of different dietary fiber types (based on variability in fermentability or degree of solubility). Switching from refined grain to whole grain will deliver more dietary fiber and nutrients associated with bran and germ, and improve diet quality.

crf312728-fig-0001-m

Carbohydrate-rich foods that are higher in slowly digested starches, resistant starch, oligosaccharides with prebiotic potential, and dietary fiber are considered to have a higher quality. Foods can be awarded an overall carbohydrate quality index (CQI). The optimum ratio of total carbohydrate (CHO) to dietary fiber should be ≤10:1.

Mostly only oligosaccharides and polysaccharides reach the colon. Even though larger molecules were fermented slower, they were still fermented within the proximal colon.

It is not surprising that there are conflicting reports with respect to effects of whole grains on gut microbiota. Part of this is due to whole grains comprising a diverse group of staple cereal foods, including wheat, corn, rice, oats, barley and rye, and hence different effects on gut microbiota are expected. Differences in study design, with respect to dose, duration, and study populations make it difficult to compare between studies and distill overarching similarities.

Enzymes can modify less fermentable dietary fiber to improve its fermentability by microbiota. Using different enzymes, dietary fibers can contribute to fermentation throughout the colon.”

https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.12728 “Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing”


This review cited a 2019 paper as “an elegant study where oat bran (including co-passengers) was shown to be effective in increasing Bifidobacterium populations in the gut, whereas purified bioactive β-glucans did not show a bifidogenic effect”:

“Whole grain oats are known to modulate human gut microbiota and have prebiotic properties. Research todate mainly attributes these effects to fibre content. However, oats are also a rich dietary source of polyphenols, which may contribute to positive modulation of gut microbiota.

We found that oats increased bifidobacteria, acetic acid and propionic acid. This was mediated by synergy of all oat compounds within the complex food matrix, rather than its main bioactive β-glucan or polyphenols.

While human digestive enzymes cannot degrade plant cell wall polysaccharides, gut xylanolytic bacteria can, producing SCFA with health-beneficial effects. Certain strains down-regulate gene and protein expression of pro-inflammatory cytokines, notably isoform of nitric oxide synthase and PPAR-γ and interferon-γ, resulting in reduced inflammatory status, suggesting that oat β-glucan have beneficial effects on human health.

Oats as a whole food led to the greatest impact on microbiota.”

https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/oat-bran-but-not-its-isolated-bioactive-glucans-or-polyphenols-have-a-bifidogenic-effect-in-an-in-vitro-fermentation-model-of-the-gut-microbiota/B23FAE2C7EED702132FC72F1C9CE990E “Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota”


The Avena nuda oats I eat for breakfast start out as 81.0 grams (1/2 cup). The only processing I do from an Illinois farmer is soaking them for 16 hours, draining then changing out to 1 1/2 cups water, then cooking for 20 minutes in a 1000W microwave at 80% power. They end up weighing 154.7 g.

I eat 51.9 g of 3-day-old sprouted Avena sativa oats from a Montana farmer at the same time, and concurrently take 2.5 g inulin. Pretty sure this 154.7 + 51.9 + 2.5 = 209.1 g combination meets an “optimum ratio of total carbohydrate to dietary fiber ≤10:1.”

Also pretty sure sprouted Avena sativa oats supply enzymes that facilitate breaking down Avena nuda complex molecules. Haven’t experienced any complaints over the past 3+ months. 🙂

Week 63 of Changing to a youthful phenotype with sprouts

Finally got around to getting an annual physical this morning. Two indicators so far, with more expected in five days. They came in early, so here’s Part 2.

1. HbA1C – glycated hemoglobin – was 4.8 on a scale of 4.8 to 5.6%. That’s down from 5.1 in June 2020. HbA1C shows a two-month average blood glucose level.

I’ve eaten advanced glycation end product (AGE)-less chicken vegetable soup almost every day since July 2019. Upcoming instantaneous blood glucose measurements may be informative, but it seems that with what I’m doing, there’s little impetus to glycate that glucose. Which satisfies my intention to avoid glycative stress.

2. BMI for a normal weight is 18.5-24.9 kg/m2. Measurements over the past two years:

  • June 2019 24.8, 0.1 below range high;
  • June 2020 22.4, 2.5 below range high and 3.9 above low; and
  • June 2021 21.0, 3.9 below range high and 2.5 above low.

Annual BMI trend is going in the right direction, but it’s too squishy to be a biomarker. I usually don’t curate studies that rely on BMI.

I eat a lot of food every day! Not going to turn my kitchen into a laboratory to quantify, though. See Switch on your Nrf2 signaling pathway for what intake was on 1/1/2021.

Once or twice a week lately I’ve backed off and skipped one of a daily two (fresh and leftovers) AGE-less chicken vegetable meals when it’s been too much food. Haven’t skipped:

  • Twice-daily combined broccoli-red cabbage-mustard sprouts; or
  • Twice-daily Avena sativa oat sprouts; or
  • My Avena nuda whole oats breakfast.

Lost 11 lbs. over 12 months without trying to lose weight. Maximal food intake didn’t result in weight gain when much of its purpose was to:

  • Reduce inflammation; and
  • Make my gut microbiota happy.

PXL_20210618_094601372

Go for the win-win with taurine

This 2021 rodent study investigated taurine effects on colitis:

“Taurine plays an important role in various essential biological processes. Health beneficial effects of taurine have been generally attributable to its antioxidant and anti-inflammatory effects.

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance derived from taurine. In fighting exogenous pathogens, neutrophils utilize one powerful weapon in their arsenal: generating the strong oxidant hypochlorous acid (HOCl), which is nature’s germ killer.

Taurine can act as a trap for HOCl forming the long-lived oxidant TauCl, which is more stable and less toxic than HOCl. TauCl (20 mg/kg) was given on daily basis by gavage for 10 days before and for 3 days after intrarectal administration of 2.5% TNBS:

antioxidants-10-00479-g008-550

TauCl inhibits generation of proinflammatory mediators by phagocytic cells. Taurine exerts an anti-inflammatory as well as antioxidant action by preventing cytolytic damage caused by HOCl generated by inflammatory cells, particularly neutrophils.

These results suggest that TauCl exerts a protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression, while blocking proinflammatory signaling mediated by NFκB and STAT3.”

https://www.mdpi.com/2076-3921/10/3/479/htm “Protective Effects of Taurine Chloramine on Experimentally Induced Colitis: NFκB, STAT3, and Nrf2 as Potential Targets”


Other curated taurine studies include:

Smoke and die early, while your twin lives on

A 2021 human twin study investigated epigenetic clocks:

“This study showed that accelerated epigenetic aging is associated with increased mortality, and smoking plays a role in explaining this association. Present findings suggest that DNAm GrimAge is a strong predictor of mortality independent of genetic influences among female twin pairs.

An invitation to participate in the study was sent to 414 female twin pairs, aged 63–76 years. Of 199 twin pairs, at least one twin died in 112 pairs during follow-up:

twins

This epigenetic age estimate that measures biological age and runs alongside, but not always in parallel with chronological age, may inform life expectancy predictions. Further research is needed to determine whether results apply to men, and the extent to which DNA methylation age can be used as a clinical biomarker of lifespan.”

https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-021-01112-7 “Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs”


If you don’t have a twin, substitute yourself as an analogous entity who has opposite behaviors. Don’t assume that smoking cannabis will produce different results from tobacco.

Meanwhile, Dr. Steven Horvath, who has a twin, continued his 2021 torrent of coauthored studies last week with Epigenetic clock and methylation studies in elephants. Amazing epigenetic clock information being published this year. Dr. Horvath is completely open to evidence, IAW, a real scientist.

Take Vitamin K2 if you take statins

This 2021 human study related Vitamin K2 status and statin usage:

“We examined the connection between statin exposure, coronary artery calcification (CAC), and vitamin K-dependent proteins (VKDPs) in patients with cardiovascular (CV) conditions. VKDPs measured in plasma included undercarboxylated (ucOC), and carboxylated osteocalcin (cOC).

CAC score (CACS) was determined by multislice computed tomography:

statins and vitamin k2 deficiency

CACS was more pronounced in statin users compared to non-users. The same was also found among CVD patients and among controls. Both ucOC and ucOC / cOC ratio were significantly elevated in statin users, indicating vitamin K deficiency.

Our results are in agreement with existing evidence about positive associations between statins and vascular calcification. They enlighten possible mechanisms through which statins may enhance calcium accumulation in arterial wall, by inhibiting VKDPs and functions involved in vascular protection.”

https://onlinelibrary.wiley.com/doi/10.1002/kjm2.12373 “Statins, vascular calcification, and vitamin K-dependent proteins: Is there a relation?”


All of this study’s measurements were done outside the liver, so Vitamin K deficiency ≈ Vitamin K2 deficiency. The uncited third paper of Vitamin K2 – What can it do? provided evidence for findings of the current study.

Per the third paper, I should have reached a blood serum level Vitamin K2 MK-7 plateau by supplementing for three weeks. We’ll see later this week if an increasing cOC / ucOC ratio had any effect on hypertension.

PXL_20210606_093626698

Precondition your defenses with broccoli sprouts

This 2020 human cell study elaborated on mechanisms mentioned in Eat broccoli sprouts for your hearing and Sulforaphane in the Goldilocks zone:

“NFE2L2/NRF2, a transcriptional factor that controls expression of multiple detoxifying enzymes through antioxidant response elements (AREs), is a target of sulforaphane (SFN). NFE2L2/NRF2 is a target gene of TFEB (transcription factor EB), a master regulator of autophagic and lysosomal functions, which we show here to be potently activated by SFN.

SFN induces TFEB activation by stimulating a moderate increase in reactive oxygen species (ROS). Subsequently, cells are preconditioned to activate a self-defense mechanism that protects against oxidative damage.

TFEB activity is required for SFN-induced protection against both acute oxidant bursts and chronic oxidative stress. By simultaneously activating macroautophagy / autophagy and detoxifying pathways, natural compound SFN may trigger a self-defense cellular mechanism that can effectively mitigate oxidative stress commonly associated with many metabolic and age-related diseases.

KAUP_A_1739442_F0009_OC

SFN-induced TFEB nuclear accumulation was completely blocked by pretreatment of cells by N-acetyl-cysteine (NAC), or by other commonly used antioxidants. NAC also blocked SFN-induced mRNA expression of TFEB target genes, as well as SFN-induced autophagosome formation.

SFN offers an exceptional therapeutic opportunity for many metabolic and age-related diseases, in which oxidative stress and impaired autophagy both contribute to pathologies.”

https://europepmc.org/article/PMC/PMC8078734 “Sulforaphane activates a lysosome-dependent transcriptional program to mitigate oxidative stress”


This study explored cell mechanisms and confirmed opposing effects of NAC. I dropped NAC supplementation 62 weeks ago during Week 1 of eating broccoli sprouts every day, and dropped other antioxidants later.

PXL_20210618_093028413

Osprey breakfast

Part 2 of Eat broccoli sprouts for your hearing

Went to a free hearing test at Costco this week. Results weren’t significantly different than those from a doctor’s office 2.5 years ago:

PXL_20210616_201843744

Didn’t have many expectations, other than I’d be given a hard sell to buy hearing aids by a technician on commission. A young woman used several sales techniques which I was prepared for, and doubled down when I didn’t answer leading questions to her satisfaction.

The second study of Part 1 offered evidence that “The antioxidant pathway was difficult to be activated in the context of accumulation of ROS.” Other studies I’ve read but haven’t curated indicated that there weren’t effective treatments once hearing damage had occurred.

When you get exposed to loud noises, do your best to immediately mitigate that by enhancing your overall Nrf2 gene expression. Timely Nrf2 activation can fix hearing damage.

It’s curious that reactive oxygen species accumulated in the inner ear doesn’t sufficiently activate the Nrf2 there. That doesn’t happen in other parts of our or other mammals’ bodies.

I’ll guess that hearing loss may exist to turn old mammals into prey, as part of evolutionarily-determined limits on lifespan that protect against population overshoot. Take responsibility for your own one precious life.

Broccoli sprouts positively influence Sestrin proteins

Four papers on Sestrin, with the first a 2021 review:

“Sestrin 2 (Sesn2) is a member of the evolutionarily conserved and stress-inducible sestrin family. In mammals, this family is composed of Sesn1–3, and Sesn2 is the main member that responds to oxidative stress.

Sesn2 inhibits mammalian target of rapamycin (mTOR)-mediated cell over-proliferation by activating adenosine monophosphate-activated protein kinase (AMPK) and its kinase activity. Sesn2 also regulates redox balance by directly exerting antioxidant enzyme activity and regulating antioxidant signaling.

Inflammation, which is not regulated by oxidative stress, also plays an important role in cardiovascular diseases (CVDs). Sesn2 is involved in inflammation and immune regulation in many systems.

There is a positive feedback loop between Sesn2 and Nrf2:

sestrin2 nrf2

Sesn2 and p62 are expressed under oxidative stress. Sesn2 binds to ULK1 and p62 to form a functional complex, which promotes p62 phosphorylation, promoting p62-dependent autophagy degradation of Keap1.

Consequently, Nrf2 accumulates in cells, transfers to the nucleus, and promotes transcriptional activation of genes controlled by antioxidant response elements (ARE).

Circulating Sesn2 levels are elevated in a variety of CVDs, such as coronary heart disease, heart failure and atrial fibrillation, which indicates that Sesn2 is induced and plays a protective role in CVDs.”

https://www.sciencedirect.com/science/article/abs/pii/S0891584920316270 “Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases” (not freely available)


A second paper was also a 2021 review:

“Sestrin2 acts as an antioxidant protein that diminishes accumulation of ROS and inhibits mTORC1 signaling. Both accumulation of ROS and activation of mTORC1 are associated with aging and age-related diseases.

Since plasma sestrin2 levels in patients with CAD and those with carotid atherosclerosis were shown to be high, it remains unclear whether or not an exogenous administration of sestrin2 could be beneficial for prevention of atherosclerotic disease.”

https://www.mdpi.com/1422-0067/22/3/1200/htm “The Protective Role of Sestrin2 in Atherosclerotic and Cardiac Diseases”


A third paper was a 2020 human study:

“Sesn 1 and Sesn 2 levels were significantly reduced in sarcopenic compared to non-sarcopenic subjects. It can be concluded that sarcopenia can be diagnosed at the early stage by using serum sestrin as one potential biomarker.”

https://link.springer.com/article/10.1007/s40520-020-01642-9 “Serum sestrins: potential predictive molecule in human sarcopenia” (not freely available)


A fourth paper was a 2020 rodent study:

“Sulforaphane (SFN) alleviated hematological variations, oxidative stress, heart dysfunction and structure disorder, and cardiomyocyte apoptosis induced by potassium dichromate. Moreover, SFN:

  • Reduced p53;
  • Cleaved caspase-3, Bcl2-associated X protein, nuclear factor kappa-B, and interleukin-1β levels; and
  • Increased Sesn2, Nrf2, heme oxygenase-1, NAD(P)H quinone oxidoreductase-1; and
  • Phosphorylated AMPK levels.

This study demonstrated that SFN ameliorates Cr(VI)-induced cardiotoxicity via activation of the Sesn2/AMPK/Nrf2 signaling pathway.”

https://pubs.rsc.org/en/content/articlelanding/2020/mt/d0mt00124 “Sulforaphane attenuates hexavalent chromium-induced cardiotoxicity via the activation of the Sesn2/AMPK/Nrf2 signaling pathway” (not freely available)


I found these studies as well as the previous post Cow milk causes disease from their citing a 2015 study The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1 (not freely available).

Cow milk causes disease

This 2021 review followed up Epigenetic effects of cow’s milk and many papers since then:

“Epidemiological studies associate intake of cow milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. Milk’s physiological function to maintain high mTORC1 signaling at the beginning of mammalian life turns into adverse health effects when this postnatal endocrine and epigenetic system is not discontinued as designated by physiological processing of the lactation genome.

Milk is a signaling interface between the maternal lactation genome and the infant’s cellular mTORC1 system that orchestrates growth, anabolism, metabolic, immunological, and neurological programming. Pasteurization combined with refrigeration exposed human milk consumers to bioactive milk exosome (MEX)-derived micro-ribonucleic acids (miRs), augmenting milk’s mTORC1 activity compared to boiled, ultra-heat-treated, or fermented milk.

milk-mediated mTORC1 signaling

Milk consumption activates five major pathways stimulating mTORC1 via:

  1. Growth factors, including growth hormone, insulin, and insulin-like growth factor 1;
  2. Amino acids, especially branched-chain amino acids;
  3. Milk fat-derived palmitic acid;
  4. Milk sugar lactose; and
  5. Epigenetic modifiers, especially MEX-derived miRs.

Understanding milk’s interaction with the central hub of metabolic regulation, mTORC1, will open new avenues for prevention of common diseases.”

https://www.mdpi.com/2218-273X/11/3/404/htm “Lifetime Impact of Cow’s Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration”


This reviewer is somewhat of a zealot. Still, he cited 555 references.

His genotype may tolerate lactose, but he didn’t argue for it:

“After breast feeding, mucosal expression of lactase, an intestinal enzyme hydrolyzing lactose into glucose and galactose, is downregulated in all mammals with the exception of Neolithic humans, who developed LCT [lactase gene] mutations allowing persistent lactase expression.

Lactose content of milk makes up around 2–8% by weight. Lactose hydrolysis provides glucose and galactose, which both activate mTORC1:

  • During glucose abundance and glycolysis, sufficient cellular energy is produced in the form of ATP, which suppresses AMPK activity. Aldolase operates as a sensor for glucose availability that directly links glucose shortage to activation of AMPK.
  • Galactose via induction of oxidative stress activates mTORC1. Galactose-induced overactivation of mTORC1 promotes senescence of neural stem cells and aging of mesenchymal stem cells.

Lactobacilli used in food and dairy fermentation increase NRF2 activation, resulting in NRF2-induced sestrin expression, which attenuates mTORC1 activation.”

Basal cognition

To follow up Electroceuticals, a 2021 article by Dr. Michael Levin:

“A key philosophical idea, borrowed from computer science, is substrate independence. Components of a living system can carry out appropriate, clearly specified cognitive functions.

Cognitive processes in embryogenesis and regeneration:

rstb20200458f01

    • (a) An egg will reliably give rise to a species-specific anatomical outcome.
    • (b) This process is usually described as a feed-forward system where activity of gene-regulatory networks (GRNs) within cells results in expression of effector proteins that, via structural properties of proteins and physical forces, will result in the emergence of complex shape. This class of models (bottom-up process driven by self-organization and parallel activity of large numbers of local agents) is difficult to apply to several biological phenomena. Regulative development can alter subsequent steps to reach the correct anatomical goal state despite drastic deviations of the starting state.
    • (c) For example, mammalian embryos can be divided in half, giving rise to perfectly normal monozygotic twins, each of which has regenerated the missing cell mass.
    • (d) Mammalian embryos can also be combined, giving rise to a normal embryo in which no parts are duplicated.
    • (e) Such capabilities suggest that pattern control is fundamentally a homeostatic process—a closed-loop system using feedback to minimize error (distance) between a current shape and a target morphology. Although these kinds of decision-making models are commonplace in engineering, they are only recently beginning to be employed in biology. This kind of pattern-homeostatic process must store a setpoint that serves as a stop condition; however, as with most types of memory, it can be specifically modified by experience.
    • (f) In the phenomenon of trophic memory, damage created at a specific point on the branched structure of deer antlers is recalled as ectopic branch points in subsequent years’ antler regeneration. This reveals ability of cells at the scalp to remember spatial location of specific damage events and alter cell behaviour to adjust the resulting pattern appropriately—a pattern memory that stretches across months of time and considerable spatial distance and is able to modify low-level (cellular) growth rules to construct a pre-determined stored pattern that differs from genome-default for this species.
    • (g) A similar capability was recently shown in a molecularly tractable model system, in which genetically normal planarian flatworms were bioelectrically reprogrammed to regenerate two-headed animals when cut in subsequent rounds of asexual reproduction in plain water.
    • (h) The decision making revealed by cells, tissues and organs in these examples of dynamic remodelling toward specific target states could be implemented by cybernetic processes at various positions along a scale of proto-cognitive complexity.

A challenge for the field of basal cognition is to reveal gradualism of cellular properties underwriting this critical biological function to leverage an understanding of clear phase transitions observed in cognitive capacities. The origin and development of nervous systems is so far the most dramatic example.”

https://royalsocietypublishing.org/doi/10.1098/rstb.2020.0458 “Uncovering cognitive similarities and differences, conservation and innovation”


Why aren’t more resources being directed toward these research efforts? Glad to see that at least one co-founder of Microsoft, Paul Allen, posthumously used his billions to sponsor science for human good.

Eat broccoli sprouts for your hearing

Two 2021 papers, both of which I found by each citing a 2009 Molecular mechanisms underlying cochlear degeneration in the tubby mouse and the therapeutic effect of sulforaphane (not freely available). First was a review:

“Hair cell damage and loss mediated by oxidative stress are important causes of hearing loss. Sensorineural hearing loss is the most common type of hearing loss, including noise induced hearing loss (NIHL), age-related hearing loss (ARHL), and ototoxic hearing loss.

Nrf2 reduces cell damage caused by oxidative stress, and maintains the dynamic balance of systematic redox by inducing and regulating expression of various antioxidant factors. This review summarizes correlation studies of Nrf2 in hearing loss, providing ideas for prevention and treatment of hearing loss with Nrf2 as the target.

fphar-12-620921-g002

There is positive feedback between p62-mediated autophagy and Nrf2. p62 promotes accumulation of Nrf2 and nuclear translocation. Concurrently, increased Nrf2 promotes p62 expression.

How Nrf2 regulates ROS changes in hair cells, and the upstream and downstream regulatory network of Nrf2 in hair cells, are still not fully understood. Studies on early prevention and treatment of hearing loss through the Keap1-Nrf2-ARE [antioxidant response element] signaling axis are still at the exploratory stage.”

https://www.frontiersin.org/articles/10.3389/fphar.2021.620921/full “The Role of Nrf2 in Hearing Loss”


Second paper was a rodent study:

“We examined oxidative stress and antioxidant response of the p62-Keap1-Nrf2 pathway in cochleae during age-related hearing loss (ARHL) and noise-induced hearing loss (NIHL). We elucidated the function of full-length and variant p62/Sqstm1 (referred to here as p62) in regulation of Nrf2 activation.

Cochlear damage was assessed by analyzing auditory brainstem response (ABR) and by counting hair cells (HCs). Malondialdehyde (MDA, a lipid peroxidation product) levels were measured in young and old mice to determine whether oxidative stress contributed to ARHL.

auditory brainstem response

  • (A) Audiometric threshold (dB) determined from click and pure tone evoked ABRs. Thresholds were each significantly different (P < 0.001) between young mice and old mice.
  • (B) HC loss percentage in basal cochlear turns. Significant differences (P < 0.001) were observed between young and old mice.
  • (C) MDA levels in the cochleae of old mice were significantly higher (P = 0.034) than those of young mice.

ROS accumulation is closely related to ARHL and NIHL. The inability of ROS accumulation to activate the Nrf2 antioxidant stress pathway under physiological conditions may be related to alternative splicing of p62 mRNA in cochleae.

However, the agonist of the Nrf2 pathway enhanced Nrf2 nuclear translocation. This suggests a mechanism in which the antioxidant pathway was difficult to be activated in the context of accumulation of ROS.”

https://www.researchsquare.com/article/rs-535219/v1 “New Target of Oxidative Stress Regulation in Cochleae:Alternative Splicing of the p62/Sqstm1 gene”


The study’s two-month-old mice were equivalent to a 20-year-old human. Its 13-to-14-month-old mice were equivalent to humans in their 60s to 70s.

I expected preconditioning to be mentioned in both papers. Maybe these researchers thought it was too obvious and didn’t need to be stated that:

  • Repeated use of a Nrf2 activator produces transient mild stress;
  • Which elicits a stronger response; and
  • Preconditions cells for future stress?

Sulforaphane in the Goldilocks zone and its cited papers exhaustively emphasized preconditioning’s importance. The main thing I’m trying to do with isothiocyanates is to send a weak pro-inflammatory signal to my endogenous ARE system to exercise natural defenses.

Twice-daily drills make me more proficient at responding to actual emergencies. Post-drill, my body recycles material to be ready to respond the next time.

I do the same thing once a day with β-glucan 1,3/1,6 to train my innate immune system. Microphages in my gut are the first responders. Like the very reactive isothiocyanates, I don’t take anything with, or an hour before or after β-glucan 1,3/1,6.

Why tolerate “the antioxidant pathway was difficult to be activated in the context of accumulation of ROS” when a sulforaphane “agonist of the Nrf2 pathway enhanced Nrf2 nuclear translocation”? For all we know, diminished natural defenses and hearing loss may exist to turn old mammals into prey.

Continued in Part 2.

Part 3 of Broccoli sprouts activate the AMPK pathway

This 2020 cell study investigated sulforaphane and three transcription pathways:

“Novel findings of this study are:

  1. AMPK controls only a subset within the Nrf2-dependent transcriptome;
  2. Altered Nrf2 levels or altered accessibility of regulatory ARE sites do not account for observed differences in target gene transcription between used wt and AMPK −/− cells;
  3. Rather, AMPK presence/activity ensures reduced Bach1 abundance with preferential Nrf2 over Bach1 binding to regulatory ARE sites, and finally stronger transactivation of selected target genes; and
  4. AMPK negatively controls bach1 mRNA expression.

fcell-08-00628-g009

In AMPK−/− cells, levels of BTB and CNC homology 1 (Bach1), a competitor of Nrf2 for ARE sites with predominant repressor function, were higher. Bach1 also bound to a greater relative extent to the examined ARE sites when compared to Nrf2.

Observed AMPK-mediated boost in transactivation of a subset of Nrf2 target genes involves downregulation of Bach1 and subsequent favored binding of activating Nrf2 over repressing Bach1 to examined ARE sites.

fcell-08-00628-g001

The discovered link between AMPK and Bach1 as well as the resulting selective influence on Nrf2 target gene expression are compelling and touch existing data:

  • Bach1 contributed to expression of only selected Nrf2 target genes in endothelial cells under hypoxic conditions which, in turn, are known to influence AMPK activity.
  • Bach1 levels are elevated during aging, in metastatic lung tumors or triple negative breast tumors with concomitant mitochondrial dysfunction, all events also partly connected with AMPK- and/or Nrf2 activity.

These issues strongly advocate for a closer look into interplay between cellular sensors and executors of the oxidative/xenobiotic and metabolic stress response, which likely will uncover additional layers of regulation of cellular stress resilience.”

https://www.frontiersin.org/articles/10.3389/fcell.2020.00628/full “AMPK Enhances Transcription of Selected Nrf2 Target Genes via Negative Regulation of Bach1”


This study hasn’t been cited even once since it was published eleven months ago. These researchers did a very good job of producing evidence for mechanisms of signaling pathways competing with and complementing each other.

This study provided further details to support Broccoli sprouts activate the AMPK pathway findings that sulforaphane first activates the AMPK pathway on the way to its main effect of Nrf2 pathway activation:

figure 8