Nrf2 Week #6: Phytochemicals

This 2023 review explored Nrf2 relationships with plant chemicals:

“This review focuses on possible mechanisms of Nrf2 activation by natural phytochemicals in preventing or treating chronic diseases, and regulating oxidative stress. Excess oxidative stress is closely related to many kinds of chronic diseases, such as cardiovascular diseases, cancer, neurodegenerative diseases, diabetes, obesity, and other inflammatory diseases.

Mitochondrial dysfunction and hyperglycemia lead to the massive production of ROS, which triggers molecular damage, inflammation, ferroptosis, insulin resistance, and β-cell dysfunction.

antioxidants-12-00236-g001

Crosstalk between Keap1-Nrf2-ARE pathway and other signaling pathways endows it with high complexity and significance in the multi-function of phytochemicals. Limited human data makes an urgent need to open the new field of phytochemical-original supplement application in human chronic disease prevention.”

https://www.mdpi.com/2076-3921/12/2/236 “The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway”


Top ten mentions, not including references:

  • 21 Sulforaphane
  • 16 Broccoli
  • 9 Curcumin
  • 5 Resveratrol
  • 5 Green tea catechins
  • 4 Luteolin
  • 3 Garlic
  • 3 Soy isoflavones
  • 3 Lycopene
  • 3 Quercetin

PXL_20230518_191008431

Nrf2 Week #4: Aging

Two 2023 reviews of Nrf2 and aging, starting with Nrf2-mitochondria interactions:

“We discuss molecular mechanisms of interactions between Nrf2 and mitochondria that influence the rate of aging and lifespan. Nrf2 activity positively affects both mitochondrial dynamics and mitochondrial quality control.

Nrf2 influences mitochondrial function through regulation of nuclear genome-encoded mitochondrial proteins and changes in the balance of ROS or other metabolites. In turn, multiple regulatory proteins functionally associated with mitochondria affect Nrf2 activity and even form mutual regulatory loops with Nrf2. These loops enable fine-tuning of cellular redox balance and, possibly, of the cellular metabolism as a whole.

mtDNA-encoded signal peptides interact with nuclear regulatory systems, first of all, Nrf2, and are possibly involved in regulation of the aging rate. Interactions between regulatory cascades that link programs ensuring maintenance of cellular homeostasis and cellular responses to oxidative stress are a significant part of both aging and anti-aging programs.

Understanding these interactions will be of great help in searching for molecular targets to counteract aging-associated diseases and aging itself. Future research on Nrf2 signaling and ability of various substances that activate the Nrf2 pathway to prevent age-associated chronic diseases will provide further insight into the role of Nrf2 activation as a possible longevity-promoting intervention.”

https://link.springer.com/article/10.1134/S0006297922120057 “Transcription Factor Nrf2 and Mitochondria – Friends or Foes in the Regulation of Aging Rate” (not freely available) Thanks to Dr. Gregory A. Shilovsky for providing a copy.


The second review evaluated whether Nrf2 is a master regulator of aging:

“This paper briefly presents main mechanisms of mammalian aging and roles of inflammation and oxidative stress in this process. Mechanisms of Nrf2 activity regulation, its involvement in aging and development of the senescence-associated secretory phenotype are also discussed.

The age-related decrease in Nrf2 activity is of universal interspecies character:

  • Rodents with high Nrf2 activity have a longer lifespan than rodents with low activity.
  • Genetic knockout of Nrf2 usually leads to the increased senescent phenotype in a variety of animal organs and tissues, and also reduces lifespan of female mice.
  • There are also opposite examples, where Nrf2 knockout in aging mice reduced iron ions deposition in the brain, lowered the level of oxidative damage in the striatum, and also alleviated age-related motor dysfunction.

10541_2022_2401_Fig2

It would be incorrect to consider the effect of Nrf2 transcription factor at the organism level as exclusively antioxidant, anti-inflammatory, and, ultimately, anti-aging. Nrf2 controls many genes, products of which have complex, pleiotropic effects on the body:

  • No experiments that use Nrf2 chemical inducers as anti-aging drugs have been performed so far.
  • Nrf2 is not involved in life extension caused by caloric restriction.
  • Epigenetic clocks do not reveal transcription factors activity of which changes with aging.

Aging is accompanied by changes in gene expression profiles, which are tissue- and species-specific. These changes only to a small extent include genes controlled by Nrf2. At the moment, it cannot be concluded that Nrf2 is the master regulator of the aging process.”

https://link.springer.com/article/10.1134/S0006297922120045 “Does Nrf2 Play a Role of a Master Regulator of Mammalian Aging?”


PXL_20230520_182643299

Nrf2 Week #3: Epigenetics

To follow the Nrf2 Week #2 finding that chromatin accessibility parallels Nrf2 expression, this 2023 cell study explored how Nrf2 influences other epigenetic processes:

“We identified antioxidant response element sequences in promoter regions of genes encoding several epigenetic regulatory factors, such as histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and proteins involved in microRNA biogenesis.

  • We treated cells with dimethyl fumarate (DMF), an activator of the NRF2 pathway through both the KEAP1 and GSK-3 pathways. NRF2 is able to modulate expression of HDAC1, HDAC2, HDAC3, and SIRT1 in different cell types.
  • DMF treatment induced DNMT1 and DNMT3b at both mRNA and protein levels. For DNTM3a, there was a slight induction of mRNA levels but not at the protein level.

antioxidants-12-00641-g007

  • Our data indicate that of all miRNAs analyzed, only miR-27a-3p, miR-27b-3p, miR-128-3p, and miR-155-5p associate with Nfe2l2 mRNA. NRF2 causes degradation of miR-155-5p, which is implicated in neuroinflammation and other pathologies, and is the main miRNA induced by LPS treatment in microglia. miR-155 alters expression of genes that regulate axon growth, supporting the bioinformatic prediction that miR-155 can regulate expression of genes involved in central nervous system development and neurogenesis.

Todate we only understand how epigenetic modifications affect expression and function of the NRF2 pathway. The fact that NRF2 can promote expression of type I HDACs, DNMTs, and proteins involved in miRNA biogenesis opens new perspectives on the spectrum of actions of NRF2 and its epigenetic influences.”

https://www.mdpi.com/2076-3921/12/3/641 “The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis”


PXL_20230515_185958612

Nrf2 Week #2: Neurons

To follow the Nrf2 Week #1 suggestion that Nrf2 target neurological disorders, this 2023 cell study investigated Nrf2 expression in neurons:

“Oxidative metabolism is inextricably linked to production of reactive oxygen species (ROS), which have the potential to damage all classes of macromolecules. Yet ROS are not invariably detrimental. Several properties make ROS useful signaling molecules, including their potential for rapid modification of proteins and close ties to cellular metabolism.

We used multiple single cell genomic datasets to explore Nrf2 expression and regulation in hundreds of neuronal and non-neuronal cell types in mouse and human. With few exceptions, Nrf2 is expressed at far lower levels in neurons than in non-neuronal support cells in both species.

This pattern is maintained in multiple disease states, and the chromatin accessibility landscape at the Nrf2 locus parallels these expression differences. These results imply that Nrf2 activity is limited in almost all neurons of the mouse and human central nervous system (CNS).

nrf2 expression

We separated cell types into neuron or non-neuronal ‘support’ cell categories. The general ‘support’ term is not meant to minimize the functional relevance of non-neuronal cells in the CNS, but is an umbrella term meant to cover everything from glial cell types (astrocytes, microglia, oligodendrocytes) to endothelial cells.

It is not clear why an important, near ubiquitous cytoprotective transcription factor like Nrf2 remains off in mature neurons, especially considering oxidative stress is a driver of many diseases. The simplest explanation is that Nrf2 activity also disrupts normal function of mature neurons.

ROS play a key role in controlling synaptic plasticity in mature neurons. These activity-dependent changes in synaptic transmission, which are important for learning and memory, are disrupted by antioxidants.

A subset of important Nrf2-targeted antioxidant genes (e.g., Slc3a2, Slc7a11, Nqo1, Prdx1) are also low in neurons. So it is likely that these and/or other Nrf2 targets must remain low or non-ROS-responsive in mature neurons. Future work exploring why this expression pattern persists in mature neurons will inform our models on roles of antioxidant genes in normal neuronal physiology and in neurological disorders.

https://www.biorxiv.org/content/10.1101/2023.05.09.540014v1.full “Limited Expression of Nrf2 in Neurons Across the Central Nervous System”


PXL_20230520_182827767

Don’t eat yourself into disease, Part 2

This blog’s 1000th curation is a 2023 rodent study associating gut microbiota, behavior, memory, and food reward:

“Energy intake and energy expenditure is regulated by the hypothalamus, and is referred to as homeostatic regulation of food intake. The reward system is the non-homeostatic regulation of food intake – pleasure-related consumption of foods enriched in fat and sugar. The pleasure is encoded by dopamine release from dopaminergic neurons projecting from the ventral tegmental area to the striatum, the nucleus accumbens, and the prefrontal cortex.

Food reward can be divided into three components – liking, wanting, and learning:

  • Liking refers to food hedonic value;
  • Wanting to the motivational process to seek out and consume certain foods; and
  • Learning to reinforcing conditioning behavior associated with food intake stimulus.

We confirmed that obese mice have a dysregulation of the learning and the wanting components of  food reward. Our previous data showed that the liking component was transferable through fecal material transplantation.

We demonstrated that gut microbes play a role in the regulation of food reward, and could be responsible for compulsive behavior and excessive motivation to obtain sucrose pellets. Moreover, obese gut microbes affected dopaminergic and opioid markers involved in reward system.

We identified 33HPP (produced exclusively by gut bacteria) as particularly increased in mice recipients of gut microbes from obese mice. We were able to demonstrate its effects as key mediator of the gut-brain axis controlling the reward response to palatable food.”

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-023-01526-w “Obese-associated gut microbes and derived phenolic metabolite as mediators of excessive motivation for food reward”


PXL_20230415_195202937

Eat broccoli sprouts for depression, Part 3

Here are two papers published after Part 2 that cited the Part 1 rodent study, starting with a 2023 rodent study performed by several Part 1 coauthors:

“We used a low-dose LPS-induced endotoxaemia model to mimic clinical characteristics of sepsis. We found that adolescent LPS treatment was sufficient to increase levels of inflammatory factor TNF-α in both the medial prefrontal cortex (mPFC) and hippocampus at post-natal day P22.

P21 LPS-treated mice were injected with sulforaphane (SFN) or saline intraperitoneally at P49 and then subjected to subthreshold social defeat stress (SSDS). We found that SFN preventative treatment significantly:

  • Decreased the social avoidance, anhedonia, and behavioural despair detected by the social interaction test, sucrose preference test, tail suspension test, and forced swim test, respectively.
  • Decreased anxiety-like behaviours without affecting locomotor activities.
  • Increased Nrf2 and brain-derived neurotrophic factor (BDNF) levels in the mPFC of P21 LPS-treated mice after SSDS compared with saline control mice.

The above results suggest that activation of the Nrf2-BDNF signalling pathway prevents the effect of adolescent LPS-induced endotoxaemia on stress vulnerability during adulthood.

sulforaphane and stress vulnerability

These results suggest that early adolescence is a critical period during which inflammation can promote stress vulnerability during adulthood. This might be due to increased inflammatory response in the mPFC, and mediated by decreased levels of Nrf2 and BDNF. These findings may shed light on the potential use of SFN as an alternative preventative intervention for inflammation-induced stress vulnerability.”

https://link.springer.com/article/10.1007/s00213-022-06285-4 “Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex” (not freely available)

This study demonstrated that adolescent diseases and stresses don’t necessarily develop into adult social problems. A timely intervention may even prevent future adult problems.

The one-time 10 mg/kg sulforaphane dose was the same as Part 1’s dose, a human equivalent of which is (10 mg x .081) x 70 kg = 57 mg.

I’d like to know more about how subjects’ memories of adverse events were retained, and subsequently affected their biology and behavior. Pretty sure limbic structures like the hypothalamus as well as lower brain structures played a part.


A 2022 review summarized what was known up to that time regarding Nrf2 and depression:

“Sulforaphane, an organosulfur compound isolated from Brassicaceae plants, is a potent natural NRF2 activator. Sulforaphane:

  • Exerts antidepressant- and anxiolytic-like activities and inhibits HPA axis and inflammatory response.
  • Has both therapeutic and prophylactic effects on inflammation-related depression.
  • Confers stress resilience.
  • Protects neurons via autophagy and promotes mitochondrial biogenesis by activating Nrf2.”

https://www.sciencedirect.com/science/article/pii/S2213231722002944 “Nrf2: An all-rounder in depression”


PXL_20230306_202857493

Eat broccoli sprouts to protect your brain from stroke

Starting this blog’s ninth year with a 2022 rodent study of sulforaphane neuroprotection:

“An example of endogenous neuroprotection is ischemia-resistance of the hippocampal regions comprising the CA2, CA3, CA4 and dentate gyrus subfields (here abbreviated to CA2-4,DG) which can be contrasted with the ischemia-vulnerable CA1 region, which is noted in rodents as well as humans.

As with CA2-4,DG, nuclear Nrf2 levels are also higher in the olfactory bulb, while in the cortex, striatum, and cerebellum, they are similar to ones observed in the CA1 region.

brain area comparative Nrf2 activity

We found an in vitro dose-dependent response to administration of sulforaphane on neuronal viability, with an optimal effect noted where the dose was 10 µM. A protective effect was also evident in vivo when a single 5 mg/kg dose of sulforaphane was administered intraperitoneally with delay to ischemia.

Morphology of the CA1 region stratum pyramidale was significantly improved in comparison to ischemia-operated group, with mean numbers of proper cells being 35 ± 19 and 20 ± 7, respectively, for subjects injected during ischemia or 30 min into reperfusion. Morphology of the CA2-4,DG region did not reveal change between the ischemia-operated, SFN-injected, and control groups.

We suggest that high levels of nuclear Nrf2 activity in CA2-4,DG may guarantee resistance of this region to I/R episode, while at the same time offering a potential explanation for the phenomenon of differential sensitivities of hippocampal regions. Our results are in line with the existing view that Nrf2 activation may represent a promising therapeutic strategy against cerebral ischemia.

The uniqueness of Nrf2 lies in its pleiotropic action and subsequent regulation of multiple cytoprotective pathways. This may support more efficient neuroprotection compared to single-target strategies.”

https://link.springer.com/article/10.1007/s12035-022-03166-x “Is Nrf2 Behind Endogenous Neuroprotection of the Hippocampal CA2-4,DG Region?”


Winter beach shock therapy

PXL_20230129_174306200

Eat mushrooms every day?

Three 2022 papers on amino acid ergothioneine, starting with a human study:

“We examined temporal relationships between plasma ergothioneine (ET) status and cognition in a cohort of 470 elderly subjects attending memory clinics in Singapore. All participants underwent baseline plasma ET measurements as well as neuroimaging for cerebrovascular disease (CeVD) and brain atrophy. Neuropsychological tests of cognition and function were assessed at baseline and follow-up visits for up to five years.

Lower plasma ET levels were associated with poorer baseline cognitive performance and faster rates of decline in function as well as in multiple cognitive domains including memory, executive function, attention, visuomotor speed, and language. In subgroup analyses, longitudinal associations were found only in non-demented individuals.

Mediation analyses showed that effects of ET on cognition seemed to be largely explainable by severity of concomitant CeVD, specifically white matter hyperintensities, and brain atrophy. Our findings support further assessment of plasma ET as a prognostic biomarker for accelerated cognitive and functional decline in pre-dementia and suggest possible therapeutic and preventative measures.”

https://www.mdpi.com/2076-3921/11/9/1717 “Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics”


Earlier this year, two of the study’s coauthors put together a collection of 11 ergothioneine papers:

“One catalyst for this upsurge of interest was the discovery in 2005 of a transporter for ET (OCTN1, often now called the ergothioneine transporter, ETT), which accounts for the fact that animals (including humans) take up and avidly retain ET from the diet. The presence of a specific transporter together with the avid retention of ET in the body implies that this compound is important to us.

To quote an old phrase ‘correlation does not imply causation.’ Low ET levels may predispose to disease, but disease could also lead to low ET levels. Possible reasons could include:

  • Alterations in diet due to illness so that less ET is consumed;
  • Decreases in ETT activity in the gut (leading to less ET uptake) or kidney (impairing ET reabsorption) with age and disease.
  • Changes in gut microbiota might influence uptake and accumulation in the body.
  • ET is being consumed as it scavenges oxygen radicals and other reactive oxygen species, the production of which is known to increase in these diseases and during ageing in general.

Only the gold standard of placebo-controlled double-blinded clinical studies can definitively establish the value (if any) of ET in preventing or treating human disease. Several such trials are being planned or in progress; we await the results with interest, and a streak of optimism.”

https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14350 “Ergothioneine, where are we now?”


One of the collection’s papers focused on what ETT research findings could or could not be replicated:

“ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable. We review substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes.

Comparison of transport efficiency (TE) for acknowledged substrates of the ETT. Bar length represents approximate TE of wild-type human ETT.

feb214269-fig-0001-m

We have not found in the literature any other ET transporters. However, it is highly probable that additional ET transporters work in the human body:

  • Uptake of ET from the small intestine into epithelial cells occurs through apically localized ETT. The very hydrophilic ET cannot then exit these cells toward the blood without help – a basolateral efflux transporter is required.
  • After oral administration of 3H-ET, a considerable amount of ET was still absorbed into the body in the ETT KO [knockout] mice. There must be another transporter for apical uptake at least in the small intestine of the mouse.
  • When ET was administered intravenously, ETT KO mice showed no change in ET concentration in the brain compared to wild type. The little ET that enters the brain must therefore pass through the BBB via a different transporter.”

https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14269 “The ergothioneine transporter (ETT): substrates and locations, an inventory”


It’s persuasive that there’s an evolutionarily conserved transmitter specific to ergothioneine. It isn’t persuasive that this compound once consumed is almost always in stand-by mode to do: what?

Ergothioneine isn’t a substitute for the related glutathione, especially since its supply isn’t similarly available from an endogenous source. It isn’t an active participant in day-to-day human life.

Still, I hedge my bets. I eat ergothioneine every day via white button mushrooms in AGE-less chicken vegetable soup at a cost of about $1.30.

PXL_20221210_191511270

What do we know about human aging from mouse models?

Here is a 2021 rodent study and relevant parts from 3 of its 26 citing papers:

“A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging.

To better understand age-related changes across the lifespan, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Assessment of functional aging in humans and mice: age-related patterns were determined based on representative data (Table 2), and then superimposed onto survival rate. (A) Body weight, (B) locomotor activity, (C) gait velocity, (D) grip strength, (E) trait anxiety, (F) memory requiring low attention level, and (G) memory requiring high attention level.

fnagi-13-697621-g012

These functional alterations across ages are non-linear, and patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age.

Functional aging of male C57BL/6J mice starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mice might be better determined on the basis of its functional capabilities.”

https://www.frontiersin.org/articles/10.3389/fnagi.2021.697621/full “Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype”


“Studies in mice show that physical function (i.e., locomotor activity, gait velocity, grip strength) begins to deteriorate around post-natal day (PND) 180, but cognitive functions (i.e., memory) do not exhibit impairment until roughly PND 660. Our results should be considered within the context of behavior changing throughout vole adulthood. Caution should be taken to avoid categorizing the oldest age group in our study as ‘elderly’ or ‘geriatric.'”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276897 “Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age”


“We used adult mice ranging in age from 5-6 months, not enough to modify experimental autoimmune encephalomyelitis progression. Mice are considered adult after 8 weeks; however, rapid growth for most biological processes is observed until 3 months of age, while past 6 months, mice might be affected by senescence.”

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1036680/full “Age related immune modulation of experimental autoimmune encephalomyelitis in PINK1 knockout mice”


“Locomotor activity and gait velocity of 12 months old male C57BL/6 correlates with an elderly human being aged 60 or older, supporting that the ~15 months old mice we used in our study were aged mice at the time of tissue collection.”

https://www.mdpi.com/1422-0067/23/20/12461 “Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diesel Exhaust”


PXL_20221122_200643133

Broccoli sprouts activate the AMPK pathway, Part 4

Today someone viewed the 2020 Part 3 of Broccoli sprouts activate the AMPK pathway which lacked citations at the time. Checking again, here are three citing 2022 papers, starting with a review:

“Nrf2 is an important transcription factor that regulates expression of a large number of genes in healthy and disease states. Nrf2 regulates expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy, and mitochondrial function in all organs of the human body, and in the peripheral and central nervous systems.

Overall, therapeutic drugs including sulforaphane that target Nrf2 expression and Nrf2/ARE pathway are promising. This article proposes additional research in Nrf2’s role within Parkinson’s disease, Huntington’s disease, and ischemic stroke in preclinical mouse models and humans with age-related neurodegenerative diseases.”

https://www.sciencedirect.com/science/article/pii/S1568163722001982 “Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases” (not freely available) Thanks to Dr. P. Hemachandra Reddy for providing a copy.


One of the Part 3 study’s coauthors contributed to this very detailed review:

“Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis.

1-s2.0-S089158492200497X-gr3_lrg

The outcome and underlying signaling events of AMPK-NRF2 crosstalk may diverge between:

  1. in vitro and in vivo studies (one cell type in isolation vs inter-organ crosstalk in living organisms);
  2. Different cell types/organs/organisms of different cultivation conditions, genetic background, age or sex;
  3. Different stress-regimens (chronic vs acute, nature of stress (lipotoxicity, redox stress, xenobiotic, starvation, etc));
  4. Different modes of Nrf2 or AMPK activation and inhibition (genetic vs pharmacological, constitutive vs transient/intermittent, systemic vs organ-specific, electrophilic vs PPI, allosteric vs covalent, or pan vs subtype-specific);
  5. Different target genes with distinct promoter and enhancer structure; or
  6. Different timing of activation.

The latter should deserve increased attention as Nrf2 is one of the most cycling genes under control of the circadian clock. Feeding behavior, metabolism and hence AMPK activity follow and substantiate the biological clock, indicating an entangled circadian regulation of metabolic and redox homeostasis.”

https://www.sciencedirect.com/science/article/pii/S089158492200497X “AMPK and NRF2: Interactive players in the same team for cellular homeostasis?”


A third citing paper was a study of lens cells that provided an example of similar metformin effects noted in Part 2 of Broccoli sprouts activate the AMPK pathway:

“Loss of Nrf2 and Nrf2 antioxidant genes expression and activity in aging cells leads to an array of oxidative-induced deleterious responses, impaired function, and aging pathologies. This deterioration is proposed to be the primary risk factor for age-related diseases such as cataracts.

AMPK regulates energy at physiological levels during metabolic imbalance and stress. AMPK is a redox sensing molecule, and can be activated under cellular accumulation of reactive oxygen species, which are endogenously produced due to loss of antioxidant enzymes.

The therapeutic potential of AMPK activation has context-dependent beneficial effects, from cell survival to cell death. AMPK activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded metformin’s effect.

Using lens epithelial cell lines (LECs) of human or mouse aging primary LECs along with lenses as model systems, we demonstrated that metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. Results uncovered crosstalk between AMPK and Bmal1/Nrf2/antioxidants mediated by metformin for blunting oxidative/aging-linked pathobiology.”

https://www.mdpi.com/2073-4409/11/19/3021/htm “Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity”


PXL_20221027_185754842

If you were given a lens to see clearly, would you accept it?

Two papers, starting with a 2022 rodent study of maternal behaviors’ effects on offspring physiologies:

Early life adversity (ELA) is a major risk factor for development of pathology. Predictability of parental care may be a distinguishing feature of different forms of ELA.

We tested the hypothesis that changes in maternal behavior in mice would be contingent on the type of ELA experienced, directly comparing predictability of care in the limited bedding and nesting (LBN) and maternal separation (MS) paradigms. We then tested whether predictability of the ELA environment altered expression of corticotropin-releasing hormone (Crh), a sexually-dimorphic neuropeptide that regulates threat-related learning.

MS was associated with increased expression of Crh-related genes in males, but not females. LBN primarily increased expression of these genes in females, but not males.”

https://www.sciencedirect.com/science/article/pii/S2352289522000595 “Resource scarcity but not maternal separation provokes unpredictable maternal care sequences in mice and both upregulate Crh-associated gene expression in the amygdala”


I came across this first study by it citing a republished version of 2005 epigenetic research from McGill University:

“Early experience permanently alters behavior and physiology. A critical question concerns the mechanism of these environmental programming effects.

We propose that epigenomic changes serve as an intermediate process that imprints dynamic environmental experiences on the fixed genome resulting in stable alterations in phenotype. These findings demonstrate that structural modifications of DNA can be established through environmental programming and that, in spite of the inherent stability of this epigenomic marker, it is dynamic and potentially reversible.”

https://www.tandfonline.com/doi/full/10.31887/DCNS.2005.7.2/mmeaney “Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome”


This post commemorates the five-year anniversary of Dr. Arthur Janov’s death. Its title is taken from my reaction to his comment on Beyond Belief: Symptoms of hopelessness. Search his blog for mentions of the second paper’s coauthors, Drs. Meaney and Szyf.

PXL_20221010_104026908.NIGHT

All about walnuts’ effects

Five 2022 papers focusing on walnuts, starting with a comparison of eight tree nuts:

“The aim of the present study was to examine 8 different popular nuts – pecan, pine, hazelnuts, pistachio, almonds, cashew, walnuts, and macadamia. Total content of phenolic compounds in nuts ranged from 5.9 (pistachio) to 432.9 (walnuts) mg/100 g.

Walnuts had the highest content of polymeric procyanidins, which are of great interest as important compounds in nutrition and biological activity, as they exhibit antioxidant, anti-inflammatory, antimicrobial, cardio- and neuroprotective action. Walnuts are good sources of fatty acids, especially omega-3 and omega-6.”

https://www.sciencedirect.com/science/article/pii/S2590157522002164 “Nuts as functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties”


A second study compared the same eight tree nuts plus Brazil nuts and peanuts:

“The highest total content of all analyzed flavonoids was determined in walnuts (114.861 µg/g) with epicatechin the most abundant, while the lowest was in almonds (1.717 µg/g). Epicatechin has antioxidant, anti-inflammatory, antitumor, and anti-diabetic properties. Epicatechin has beneficial effects on the nervous system, enhances muscle performance, and improves cardiac function.”

https://www.mdpi.com/1420-3049/27/14/4326/htm “The Content of Phenolic Compounds and Mineral Elements in Edible Nuts”


Next, two systematic reviews and meta-analyses of human studies:

“We carried out a systematic review of cohort studies and randomized controlled trials (RCTs) investigating walnut consumption, compared with no or lower walnut consumption, including those with subjects from within the general population and those with existing health conditions, published from 2017 to 5 May 2021.

  • Evidence published since 2017 is consistent with previous research suggesting that walnut consumption improves lipid profiles and is associated with reduced CVD risk.
  • Evidence pointing to effects on blood pressure, inflammation, hemostatic markers, and glucose metabolism remains conflicting.
  • Evidence from human studies showing that walnut consumption may benefit cognitive health, which is needed to corroborate findings from animal studies, is now beginning to accumulate.”

https://academic.oup.com/nutritionreviews/advance-article/doi/10.1093/nutrit/nuac040/6651942 “Walnut consumption and health outcomes with public health relevance – a systematic review of cohort studies and randomized controlled trials published from 2017 to present”


“We aimed to perform a systematic review and meta-analysis of RCTs to thoroughly assess data concerning effects of walnut intake on selected markers of inflammation and metabolic syndrome in mature adults. Our findings showed that:

  • Walnut-enriched diets significantly decreased TG, TC, and LDL-C concentrations, while HDL-C levels were not significantly affected.
  • No significant changes were noticed on anthropometric, cardiometabolic, and glycemic indices after higher walnut consumption.
  • Inflammatory biomarkers did not record statistically significant results.”

https://www.mdpi.com/2076-3921/11/7/1412/htm “Walnut Intake Interventions Targeting Biomarkers of Metabolic Syndrome and Inflammation in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials”


Finishing with a rodent study that gave subjects diabetes with a high-fat diet, then mixed two concentrations of walnut extract in with the treatment groups’ chow:

“This study was conducted to evaluate the protective effect of Gimcheon 1ho cultivar walnut (GC) on cerebral disorder by insulin resistance, oxidative stress, and inflammation in HFD-induced diabetic disorder mice. After HFD feed was supplied for 12 weeks, samples were orally ingested for 4 weeks to GC20 and GC50 groups (20 and 50 mg/kg of body weight, respectively).

  • Administration of GC improved mitochondrial membrane potential function, and suppressed oxidative stress in the brain.
  • GC inhibited hepatic and cerebral lipid peroxidation and the formation of serum AGEs, and increased serum antioxidant activity to improve HFD-induced oxidative stress.
  • The HFD group showed significant memory impairment in behavioral tests. On the other hand, administration of GC showed improvement in spatial learning and memory function.

walnut brain effects

Based on these physiological activities, GC showed protective effects against HFD-induced diabetic dysfunctions through complex and diverse pathways.”

https://www.mdpi.com/1420-3049/27/16/5316/htm “Walnut Prevents Cognitive Impairment by Regulating the Synaptic and Mitochondrial Dysfunction via JNK Signaling and Apoptosis Pathway in High-Fat Diet-Induced C57BL/6 Mice”


How do you like my sand art?PXL_20221016_154923750

Don’t bother eating broccoli sprouts if you’re old?

I try to not curate research that wastes resources. Couldn’t help but present this 2022 rodent study:

“We aimed to evaluate if sulforaphane (SFN) long-term treatment was able to prevent age-associated cognitive decline in adult (15-month-old) and old (21-month-old) female and male rats.

Our results showed that SFN restored redox homeostasis in brain cortex and hippocampus of adult rats, preventing cognitive decline in both sexes. However, redox responses were not the same in males and females.

Old rats were not able to recover their redox state as adults did, but they had a mild improvement. These results suggest that SFN mainly prevents rather than reverts neural damage; though, there might also be a range of opportunities to use hormetins like SFN, to improve redox modulation in old animals.”

https://link.springer.com/article/10.1007/s10522-022-09984-9 “Long-term sulforaphane-treatment restores redox homeostasis and prevents cognitive decline in middleaged female and male rats, but cannot revert previous damage in old animals” (not freely available)


These researchers cited Sulforaphane in the Goldilocks zone for hormetic effects of sulforaphane, so I asked:

“Did you develop any preliminary dose/response data for stating ‘there might also be a range of opportunities to use hormetins like SFN to improve redox modulation in old animals’?”

They cited Broccoli sprouts activate the AMPK pathway for long-term effects of a small sulforaphane dose, so I asked:

“Also, the three studies cited for ‘0.5 mg/Kg, i.e. 2.82 μmol/Kg BW for 3 months’ were all mouse studies. Since this was a rat study, wouldn’t there be increased dose and duration equivalencies?”

I’ll update this blog post in the event either of my questions to these researchers are answered.

PXL_20220819_101656448

Sulforaphane nose drops

This 2022 rodent study compared capabilities of intranasal nanoparticle sulforaphane and free sulforaphane to mitigate brain damage caused by a common cancer treatment:

“Non-invasive intranasal (IN) trafficking of therapeutic agents with nanocarriers can enhance efficacy of drug delivery, biodistribution, bioavailability, and absorption against enzymatic degradation and extracellular transportation. Direct IN trafficking of nanocarriers is expected to reduce drug wastage, administration frequency, and undesirable adverse effects.

The nasal route for brain-targeted delivery of sulforaphane (SF) loaded within iron oxide nanoparticles (Fe3O4-NPs) was based on improving physicochemical stability of SF, and to enhance its bioavailability by avoiding oral route drawbacks like extensive first-pass metabolism and intestinal drug degradation.

Cisplatin (CIS) significantly induced a significant increase in acetylcholinesterase activities and lipid peroxides, and a significant decrement in glutathione and nitric oxide contents. We aimed to explore the nanotherapeutic potential of intranasally delivered SF loaded within Fe3O4-NPs (N.SF) against CIS-induced neurotoxicity through different biochemical, behavioral, and histological investigations.

hippocampus damage

Treatment with N.SF was more capable of mitigating both CIS-induced striatal and cortical injuries. IN treatment with either SF or N.SF showed equal alleviative potential regarding CIS-induced hippocampal or cerebellar injury.

These encouraging results demonstrated the potential use of iron-oxide NPs as neurotherapeutic agents, and confirmed the possibility of developing a novel promising and non-invasive intranasal delivery system for treatment of CIS-induced neurotoxicity.”

https://link.springer.com/article/10.1007/s12640-022-00555-x “Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity”


I found this study from it citing a paper in Do broccoli sprouts treat migraines?

PXL_20220815_095451252

Non-patentable boron benefits

To follow up Is boron important to health? I’ll highlight a 2022 review of boron intake:

“Boron is essential for activity of several metabolic enzymes, hormones, and micronutrients. It is important for growth and maintenance of bone, reduction in inflammatory biomarkers, and increasing levels of antioxidant enzymes.

The average person’s daily diet contains 1.5 to 3 milligrams of boron. Boron intakes of 1–3 mg/day have been shown to improve bone and brain health in adults when compared to intakes of 0.25–0.50 mg/day.

One week of 10 mg/d boron supplementation resulted in a 20% reduction in inflammatory biomarkers TNF-α, as well as significant reductions (nearly 50%) in plasma concentrations of hs-CRP and IL-6. Calcium fructoborate, a naturally occurring, plant-based boron-carbohydrate complex, had beneficial effects on osteoarthritis (OA) symptoms. A double-blind study in middle-aged patients with primary OA found that all groups except the placebo group saw a reduction in inflammatory biomarkers after 15 days of food supplementation with calcium fructoborate.

Dietary boron intake significantly improves brain function and cognitive functioning in humans. Electroencephalograms showed that boron pharmacological intervention after boron deficiency improved functioning in older men and women, such as less drowsiness and mental alertness, better psychomotor skills (for example, motor speed and dexterity), and better cognitive processing (e.g., attention and short-term memory). Boron compounds can help with both impaired recognition and spatial memory problems.

We discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. Boron reagents will play a significant role to improve dysbiosis.”

https://www.mdpi.com/1420-3049/27/11/3402/htm “The Role of Microbiome in Brain Development and Neurodegenerative Diseases”


PXL_20220814_101418757