Transgenerational effects of early environmental insults on aging and disease

The first paper of Transgenerational epigenetic inheritance week is a 2017 Canadian/Netherlands review that’s organized as follows:

“First, we address mechanisms of developmental and transgenerational programming of disease and inheritance. Second, we discuss experimental and clinical findings linking early environmental determinants to adverse aging trajectories in association with possible parental contributions and sex-specific effects. Third, we outline the main mechanisms of age-related functional decline and suggest potential interventions to reverse negative effects of transgenerational programming.”

A transgenerational phenotype was defined as an epigenetic modification that was maintained at least either to the F2 generation in the paternal lineage or to the F3 generation in the maternal lineage.

The reviewers noted that the mechanisms of transgenerational programming are complex and multivariate.  The severity, timing, and type of exposure, lineage of transmission, germ cell exposure, and gender of an organism were the main factors that may determine the consequences. The mechanisms reviewed were:

  1. Parental exposure to an adverse environment;
  2. Altered maternal behavior and care of the offspring; and
  3. Experience-dependent modifications of the epigenome.

There was a long list of diseases and impaired functionalities that were consequences of ancestral experiences and exposures. Most of the studies were animal, but a few were human, such as those done on effects of extended power outages during the Quebec ice storm of January 1998.

One intervention that was effective in reversing a transgenerational phenotype induced by deficient rodent maternal care was to place pups with a caring foster female soon after birth. It’s probably unacceptable in human societies to preemptively recognize all poor-care human mothers and remove the infant to caring foster mothers, but researchers could probably find enough instances to develop studies of the effectiveness of the placements in reversing a transgenerational phenotype.

The review didn’t have suggestions for reversing human transgenerational phenotypes, just  “..potential interventions to reverse negative effects of transgenerational programming.” The interventions suggested for humans – exercise, enriched lifestyle, cognitive training, dietary regimens, and expressive art and writing therapies – only reduced the impact of transgenerational epigenetic effects.

The tricky wording of “..reverse negative effects of transgenerational programming” showed that research paradigms weren’t aimed at resolving causes. The review is insufficient for the same reasons mentioned in How one person’s paradigms regarding stress and epigenetics impedes relevant research, prompting my same comment:

“Aren’t people interested in human treatments of originating causes so that their various symptoms don’t keep bubbling up? Why wouldn’t research paradigms be aligned accordingly?”

When reversals of human transgenerational phenotypes aren’t researched, the problems compound as they’re transmitted to the next generations. “Transgenerational effects of early environmental insults on aging and disease incidence” (not freely available)


The cerebellum ages more slowly than other body and brain areas

This 2015 UCLA human study used the epigenetic clock to find:

“All brain regions have similar DNAm ages in subjects younger than 80, but brain region becomes an increasingly significant determinant of age acceleration in older subjects. The cerebellum has a lower epigenetic age than other brain regions in older subjects.

To study age acceleration effects in non-brain tissues as well, we profiled a total of 30 tissues of a 112 year old woman. The cerebellum exhibited the lowest (negative) age acceleration effect compared to the remaining 29 other regions. In contrast, bone, bone marrow, and blood exhibit relatively older DNAm ages.”

Limitations included:

  • “While the epigenetic age of blood has been shown to relate to biological age, the same cannot yet be said about brain tissue.
  • Cellular heterogeneity may confound these results since the cerebellum involves distinct cell types.
  • This cross-sectional analysis does not lend itself for dissecting cause and effect relationships.”

The study didn’t determine why the cerebellum was relatively younger. Some hypotheses are:

  • “Our findings suggest that cerebellar DNA is epigenetically more stable and requires less ‘maintenance work.’
  • The cerebellum has a lower metabolic rate than cortex.
  • It has far fewer mitochondrial DNA (mtDNA) deletions than cortex especially in older subjects, and it accumulates less oxidative damage to both mtDNA and nuclear DNA than does cortex.” “The cerebellum ages slowly according to the epigenetic clock”

The current paradigm of child abuse limits pre-childhood causal research

As an adult, what would be your primary concern if you suspected that your early life had something to do with current problems? Would you be interested in effective treatments of causes of your symptoms?

Such information wasn’t available in this 2016 Miami review of the effects of child abuse. The review laid out the current paradigm mentioned in Grokking an Adverse Childhood Experiences (ACE) score, one that limits research into pre-childhood causes for later-life symptoms.

The review’s goal was to describe:

“How numerous clinical and basic studies have contributed to establish the now widely accepted idea that adverse early life experiences can elicit profound effects on the development and function of the nervous system.”

The hidden assumption of almost all of the cited references was that these distant causes can no longer be addressed. Aren’t such assumptions testable here in 2016?

As an example, the Discussion section posed the top nine “most pressing unanswered questions related to the neurobiological effects of early life trauma.” In line with the current paradigm, the reviewer assigned “Are the biological consequences of ELS [early life stress] reversible?” into the sixth position.

If the current paradigm encouraged research into treatment of causes, there would probably already be plenty of evidence to demonstrate that directly reducing the source of the damage would also reverse the damaging effects. There would have been enough studies done so that the generalized question of reversibility wouldn’t be asked.

Aren’t people interested in human treatments of originating causes so that their various symptoms don’t keep bubbling up? Why wouldn’t research paradigms be aligned accordingly?

The review also demonstrated how the current paradigm of child abuse misrepresents items like telomere length and oxytocin. Researchers on the bandwagon tend to forget about the principle Einstein expressed as:

“No amount of experimentation can ever prove me right; a single experiment can prove me wrong.”

That single experiment for telomere length arrived in 2016 with Using an epigenetic clock to distinguish cellular aging from senescence. The seven references the review cited for telomere length that had “is associated with” or “is linked to” child abuse findings should now be viewed in a different light.

The same light shone on oxytocin with Testing the null hypothesis of oxytocin’s effects in humans and Oxytocin research null findings come out of the file drawer. See their references, and decide for yourself whether or not:

“Claimed research findings may often be simply accurate measures of the prevailing bias.” “Paradise Lost: The Neurobiological and Clinical Consequences of Child Abuse and Neglect”

Using an epigenetic clock with older adults

This 2016 German human study found:

“Epigenetic age acceleration is correlated with clinically relevant aging-related phenotypes through pathways unrelated to cellular senescence as assessed by telomere length.

The current work employed the frailty index, a multi-dimensional approach that combines [34] parameters of multiple physiological systems and functional capacities. The present findings were based on [1,820] study participants aged 50 to 75 years.

Innovative approaches like Mendelian randomization will be needed to elucidate whether epigenetic age acceleration indeed plays a causal role for the development of clinical phenotypes.”

The study had an informative “Age acceleration and telomere length are not correlated” section with references. It was another step toward establishing the Horvath epigenetic clock for widespread usage. “Frailty is associated with the epigenetic clock but not with telomere length in a German cohort”

The link between scientific value and content is broken at

Should we expect content posted on the Proceedings of the National Academy of Sciences of the United States of America to have scientific value?

This 2016 Singapore study was a “PNAS Direct Submission” that claimed:

“This paper makes a singular contribution to understanding the association between biological aging indexed by leukocyte telomeres length (LTL) and delay discounting measured in an incentivized behavioral economic task.

LTL is an emerging marker of aging at the cellular level, but little is known regarding its link with poor decision making that often entails being overly impatient.”

Whether measured at the level of a human or of a blood cell, in 2016 there wasn’t incontrovertible evidence to support:

  • “Biological aging indexed by leukocyte telomeres length
  • LTL is an emerging marker of aging at the cellular level”

Using an epigenetic clock to distinguish cellular aging from senescence found:

Cellular ageing is distinct from cellular senescence and independent of DNA damage response and telomere length.”

If that study was too recent, the researchers and reviewer knew or should have known of studies such as this 2009 study that found the correlation between a person’s chronological age and blood cell telomere length was r = −0.51 in women and r = −0.55 in men.

A study of biological aging in young adults with limited findings was cited for evidence that “the seeds of biological aging are widely thought to be planted early in life.” That study didn’t elucidate the point, however, as it didn’t fully link its measurements when the subjects were 38 years old with measurements taken during the subjects’ early lives.

Problematic research with telomere length was cited for evidence that “other factors, such as the early family environment, lifestyle, and stress, also have considerable impact on cellular aging.” The researchers had to be willing to overlook that study’s multiple questionable practices in order to cite it as evidence for anything.

Nevertheless, the study used a one-to-one correspondence of telomere length and cellular aging.

The researchers speciously modeled a relationship between telomere length and the behavioral trait “poor decision making that often entails being overly impatient.” That overreach was further stretched to the breaking point:

“We then asked if genes possibly modulate the effect of impatient behavior on LTL.

The oxytocin receptor gene (OXTR) polymorphism rs53576, which has figured prominently in investigations of social cognition and psychological resources, and the estrogen receptor β gene (ESR2) polymorphism rs2978381, one of two gonadal sex hormone genes, significantly mitigate the negative effect of impatience on cellular aging in females.”

The “significantly mitigate” finding was “fun with numbers” that produced false effects rather than solid evidence. Consider that:

  1. The study’s model disregarded the probability that “Cellular ageing is independent of telomere length.”
  2. The researchers provided no mechanisms that plausibly linked performance “in an incentivized behavioral economic task” with telomere length.
  3. The researchers didn’t characterize any causal mechanisms whereby two gene variants affected the task performance’s purported effect on telomere length.

What’s the real reason the reviewer forwarded this paper to “Delay discounting, genetic sensitivity, and leukocyte telomere length”

Using an epigenetic clock to distinguish cellular aging from senescence

The 2016 UK/UCLA human study found:

“Induction of replicative senescence (RS) and oncogene-induced senescence (OIS) are accompanied by ageing of the cell. However, senescence induced by DNA damage is not, even though RS and OIS activate the cellular DNA damage response pathway, highlighting the independence of senescence from cellular ageing.

We used primary endothelial cells (ECs) that were derived from the human coronary artery of a 19 year old male.

The fact that maintenance of telomere length by telomerase did not prevent cellular ageing defines the singular role of telomeres as that of a means by which cells restrict their proliferation to a certain number; which was the function originally ascribed to it. Cellular ageing on the other hand proceeds regardless of telomere length.

Collectively, our results reveal that cellular ageing is distinct from cellular senescence and independent of DNA damage response and telomere length.”

The following was the closest the study came to a Limitations statement:

“Although the characteristics of cellular ageing are still not well known, the remarkable precision with which the epigenetic clock can measure it and correlate it to biological ageing remove any doubt of its existence, distinctiveness and importance. This inevitably raises the question of what is the nature of this cellular ageing, and what are its eventual physical consequences.

Admittedly, the observations above do not purport to provide the answer, but they have however, cleared the path to its discovery by unshackling cellular ageing from senescence, telomeres and DNA damage response, hence inviting fresh perspectives into its possible mechanism.”

The epigenetic clock method was the same used by:[]=7383&path[]=21162 “Epigenetic clock analyses of cellular senescence and ageing”

Use it or lose it: the interplay of new brain cells, age, and activity

This 2015 German review was of aging and activity in the context of adult neurogenesis:

“Adult neurogenesis might be of profound functional significance because it occurs at a strategic bottleneck location in the hippocampus.

Age-dependent changes essentially reflect a unidirectional development in that everything builds on what has occurred before. In this sense, aging can also be seen as continued or lifelong development. This idea has limitations but is instructive with regard to adult neurogenesis, because adult neurogenesis is neuronal development under the conditions of the adult brain.

The age-related alterations of adult neurogenesis themselves have quantitative and qualitative components. So far, most research has focused on the quantitative aspects. But there can be little doubt that qualitative changes do not simply follow quantitative changes (e.g., in cell or synapse numbers), but emerge on a systems level and above when an organism ages. With respect to adult neurogenesis, only one multilevel experiment including morphology and behavior has been conducted, and, even in that study, only three time points were investigated.

In old age, adult neurogenesis occurs at only a small fraction of the level in early adulthood. The decline does not seem to be ‘regulated’ but rather the by-product of many age-related changes of other sorts.

From a behavioral level down to a synaptic level, activity increases adult neurogenesis. This regulation does not seem to occur in an all-or-nothing fashion but rather influences different stages of neuronal development differently. Both cell proliferation and survival are influenced by or even depend on activity.

The effects of exercise and environmental enrichment are additive, which indicates that increasing the potential for neurogenesis is sufficient to increase the actual use of the recruitable cells in the case of cognitive stimulation. Physical activity would not by itself provide specific hippocampus-relevant stimuli that induce net neurogenesis but be associated with a greater chance to encounter specific relevant stimuli.

Adult hippocampal neurogenesis might contribute to a structural or neural reserve that if appropriately trained early in life might provide a compensatory buffer of brain plasticity in the face of increasing neurodegeneration or nonpathological age-related functional losses. There is still only limited information on the activity-dependent parameters that help to prevent the age-dependent decrease in adult neurogenesis and maintain cellular plasticity.

The big question is what the functional contribution of so few new neurons over so long periods can be. Any comprehensive concept has to bring together the acute functional contributions of newly generated, highly plastic neurons and the more-or-less lasting changes they introduce to the network.”

I’ve quoted quite a lot, but there are more details that await your reading. A few items from the study referenced in the first paragraph above:

“The hippocampus represents a bottleneck in hippocampal neurogenesis occurs at exactly the narrowest spot.

We have derived the theory that the function of adult hippocampal neurogenesis is to enable the brain to accommodate continued bouts of novelty..a mechanism for preparing the hippocampus for processing greater levels of complexity.”

The role of the hippocampus in emotion was ignored as it so often is. The way to address many of the gaps mentioned by the author may be to Advance science by including emotion in research.

For example, from the author’s The mystery of humans’ evolved capability for adults to grow new brain cells:

“Adult neurogenesis is already effective early in life, actually very well before true adulthood, and is at very high levels when sexual maturity has been reached. Behavioral advantages associated with adult neurogenesis must be relevant during the reproductive period.”

When human studies are designed to research how “behavioral advantages associated with adult neurogenesis must be relevant” what purpose does it serve to exclude emotional content? “Activity Dependency and Aging in the Regulation of Adult Neurogenesis”