Week 144 of Changing to a youthful phenotype with sprouts

Two papers, starting with a 2023 study that investigated the same red radish cultivar as Sulforaphene, a natural analog of sulforaphane:

“Availability of microgreen products is constantly rising, i.e., they are offered for sale in local farmers markets, specialty stores, and in chain grocery stores. Due to the low demands required for their cultivation and easily available LED settings, microgreens are increasingly grown on a small scale in homes and after harvesting, they are stored in kitchen refrigerators at 4 °C.

The aim of this study was to simulate such cultivation and storage conditions to examine antioxidant capacity of home-grown radish microgreens. Seven-day-old radish microgreens, grown under purple and white LED light, were harvested and stored at 4 °C for two weeks.

Measurements of total antioxidant capacity and bioactive substances were conducted on the harvesting day and on the 3rd, 7th, and 14th day of storage. All three radish cultivars (Raphanus sativus L.) with different leaf colorations:

  • Purple radish (R. sativus cult. China Rose, cvP);
  • Red radish (R. sativus cult. Sango, cvR); and
  • Green radish (Raphanus sativus var. longipinnatus, Japanese white or daikon radish, cvG)

were purchased commercially from a local supplier.

The highest contents of total soluble phenolics, proteins, and sugars, dry matter, and monomeric anthocyanin content, as well as higher overall antioxidant capacity determined in the red radish cultivar (cvR), distinguished this cultivar as the most desirable for human consumption regardless of the cultivation light spectrum.”

https://www.mdpi.com/2311-7524/9/1/76 “Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars”


A 2021 review summarized what was known about radishes up to then. Here’s part of its Discussion section:

“It is worth considering radish’s organoleptic characteristics since its particular flavor can influence its acceptability among consumers. The main compound associated with its characteristic pungent flavor is raphasatin, which we have found to be the most reported isothiocyanate produced from the breakdown of glucoraphasatin.

Glucoraphasatin ranked as one of the most concentrated glucosinolates in radish, particularly in its sprouts, but also present in other parts like roots and seeds. Pungency differs among radish cultivars, environmental growth factors, agronomic, and cooking practices.”

1-s2.0-S0924224421003058-gr3_lrg

https://www.sciencedirect.com/science/article/pii/S0924224421003058 “Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review”


Seeds I’ve sprouted this year so far, left to right – red radish (Sango), broccoli, red cabbage (Red Acre), yellow mustard, oat (Avena sativa):

PXL_20230106_121548495

Red radish had similar growth characteristics as broccoli. Started with 3.6 grams of seeds, which increased to 22.2 g after three days using the same soaking and rinsing protocol I use for other sprouts.

PXL_20230109_121815772

The taste of red radish was too sharp for me to eat by themselves, so I combined them with my broccoli / red cabbage / mustard sprout mix. Bumped up microwaving time to 48 seconds in a 1000 W microwave while staying short of the 60°C (140°F) myrosinase cliff.

The whole mix still had a strong radish taste, though. It was as if two whole red radishes were sliced into a small salad.

Can’t add anything more to dampen that taste and expect beneficial compounds to be unaffected. From Week 19:

A 2018 Netherlands study Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels found:

Compared to the control broccoli sprout, incorporation of sprouts in gels led to lower bioavailability for preformed sulforaphane and iberin.”

IAW, eating protein, fats, and fiber along with microwaved broccoli sprouts wouldn’t help. A 2018 review with some of the same researchers Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion offered one possible explanation for protein acting to lower broccoli sprout compounds’ bioavailability:

“In vitro studies show that ITCs can potentially react with amino acids, peptides, and proteins, and this reactivity may reduce the ITC bioavailability in protein‐rich foods. More in vivo studies should be performed to confirm the outcome obtained in vitro.”

Mixing in red radish sprouts also gave me an upset stomach five of the six mornings. So I won’t continue to sprout red radish.

That said, I’d definitely consider sprouting red radish again to accelerate isothiocyanate treatment of problems where symptoms are much worse than an upset stomach, such as:

  • Neurogenerative diseases with their cognitive decline;
  • Immune system disorders;
  • Bacterial and viral infections; and
  • Other damage caused by oxidative stress conditions in eyes, vascular system, kidney function, etc.

Piping in the New Year

PXL_20230101_193048797

Eat mushrooms every day?

Three 2022 papers on amino acid ergothioneine, starting with a human study:

“We examined temporal relationships between plasma ergothioneine (ET) status and cognition in a cohort of 470 elderly subjects attending memory clinics in Singapore. All participants underwent baseline plasma ET measurements as well as neuroimaging for cerebrovascular disease (CeVD) and brain atrophy. Neuropsychological tests of cognition and function were assessed at baseline and follow-up visits for up to five years.

Lower plasma ET levels were associated with poorer baseline cognitive performance and faster rates of decline in function as well as in multiple cognitive domains including memory, executive function, attention, visuomotor speed, and language. In subgroup analyses, longitudinal associations were found only in non-demented individuals.

Mediation analyses showed that effects of ET on cognition seemed to be largely explainable by severity of concomitant CeVD, specifically white matter hyperintensities, and brain atrophy. Our findings support further assessment of plasma ET as a prognostic biomarker for accelerated cognitive and functional decline in pre-dementia and suggest possible therapeutic and preventative measures.”

https://www.mdpi.com/2076-3921/11/9/1717 “Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics”


Earlier this year, two of the study’s coauthors put together a collection of 11 ergothioneine papers:

“One catalyst for this upsurge of interest was the discovery in 2005 of a transporter for ET (OCTN1, often now called the ergothioneine transporter, ETT), which accounts for the fact that animals (including humans) take up and avidly retain ET from the diet. The presence of a specific transporter together with the avid retention of ET in the body implies that this compound is important to us.

To quote an old phrase ‘correlation does not imply causation.’ Low ET levels may predispose to disease, but disease could also lead to low ET levels. Possible reasons could include:

  • Alterations in diet due to illness so that less ET is consumed;
  • Decreases in ETT activity in the gut (leading to less ET uptake) or kidney (impairing ET reabsorption) with age and disease.
  • Changes in gut microbiota might influence uptake and accumulation in the body.
  • ET is being consumed as it scavenges oxygen radicals and other reactive oxygen species, the production of which is known to increase in these diseases and during ageing in general.

Only the gold standard of placebo-controlled double-blinded clinical studies can definitively establish the value (if any) of ET in preventing or treating human disease. Several such trials are being planned or in progress; we await the results with interest, and a streak of optimism.”

https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14350 “Ergothioneine, where are we now?”


One of the collection’s papers focused on what ETT research findings could or could not be replicated:

“ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable. We review substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes.

Comparison of transport efficiency (TE) for acknowledged substrates of the ETT. Bar length represents approximate TE of wild-type human ETT.

feb214269-fig-0001-m

We have not found in the literature any other ET transporters. However, it is highly probable that additional ET transporters work in the human body:

  • Uptake of ET from the small intestine into epithelial cells occurs through apically localized ETT. The very hydrophilic ET cannot then exit these cells toward the blood without help – a basolateral efflux transporter is required.
  • After oral administration of 3H-ET, a considerable amount of ET was still absorbed into the body in the ETT KO [knockout] mice. There must be another transporter for apical uptake at least in the small intestine of the mouse.
  • When ET was administered intravenously, ETT KO mice showed no change in ET concentration in the brain compared to wild type. The little ET that enters the brain must therefore pass through the BBB via a different transporter.”

https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14269 “The ergothioneine transporter (ETT): substrates and locations, an inventory”


It’s persuasive that there’s an evolutionarily conserved transmitter specific to ergothioneine. It isn’t persuasive that this compound once consumed is almost always in stand-by mode to do: what?

Ergothioneine isn’t a substitute for the related glutathione, especially since its supply isn’t similarly available from an endogenous source. It isn’t an active participant in day-to-day human life.

Still, I hedge my bets. I eat ergothioneine every day via white button mushrooms in AGE-less chicken vegetable soup at a cost of about $1.30.

PXL_20221210_191511270

What do we know about human aging from mouse models?

Here is a 2021 rodent study and relevant parts from 3 of its 26 citing papers:

“A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging.

To better understand age-related changes across the lifespan, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Assessment of functional aging in humans and mice: age-related patterns were determined based on representative data (Table 2), and then superimposed onto survival rate. (A) Body weight, (B) locomotor activity, (C) gait velocity, (D) grip strength, (E) trait anxiety, (F) memory requiring low attention level, and (G) memory requiring high attention level.

fnagi-13-697621-g012

These functional alterations across ages are non-linear, and patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age.

Functional aging of male C57BL/6J mice starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mice might be better determined on the basis of its functional capabilities.”

https://www.frontiersin.org/articles/10.3389/fnagi.2021.697621/full “Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype”


“Studies in mice show that physical function (i.e., locomotor activity, gait velocity, grip strength) begins to deteriorate around post-natal day (PND) 180, but cognitive functions (i.e., memory) do not exhibit impairment until roughly PND 660. Our results should be considered within the context of behavior changing throughout vole adulthood. Caution should be taken to avoid categorizing the oldest age group in our study as ‘elderly’ or ‘geriatric.'”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276897 “Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age”


“We used adult mice ranging in age from 5-6 months, not enough to modify experimental autoimmune encephalomyelitis progression. Mice are considered adult after 8 weeks; however, rapid growth for most biological processes is observed until 3 months of age, while past 6 months, mice might be affected by senescence.”

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1036680/full “Age related immune modulation of experimental autoimmune encephalomyelitis in PINK1 knockout mice”


“Locomotor activity and gait velocity of 12 months old male C57BL/6 correlates with an elderly human being aged 60 or older, supporting that the ~15 months old mice we used in our study were aged mice at the time of tissue collection.”

https://www.mdpi.com/1422-0067/23/20/12461 “Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diesel Exhaust”


PXL_20221122_200643133

Broccoli sprouts activate the AMPK pathway, Part 4

Today someone viewed the 2020 Part 3 of Broccoli sprouts activate the AMPK pathway which lacked citations at the time. Checking again, here are three citing 2022 papers, starting with a review:

“Nrf2 is an important transcription factor that regulates expression of a large number of genes in healthy and disease states. Nrf2 regulates expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy, and mitochondrial function in all organs of the human body, and in the peripheral and central nervous systems.

Overall, therapeutic drugs including sulforaphane that target Nrf2 expression and Nrf2/ARE pathway are promising. This article proposes additional research in Nrf2’s role within Parkinson’s disease, Huntington’s disease, and ischemic stroke in preclinical mouse models and humans with age-related neurodegenerative diseases.”

https://www.sciencedirect.com/science/article/pii/S1568163722001982 “Role of Nrf2 in aging, Alzheimer’s and other neurodegenerative diseases” (not freely available) Thanks to Dr. P. Hemachandra Reddy for providing a copy.


One of the Part 3 study’s coauthors contributed to this very detailed review:

“Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis.

1-s2.0-S089158492200497X-gr3_lrg

The outcome and underlying signaling events of AMPK-NRF2 crosstalk may diverge between:

  1. in vitro and in vivo studies (one cell type in isolation vs inter-organ crosstalk in living organisms);
  2. Different cell types/organs/organisms of different cultivation conditions, genetic background, age or sex;
  3. Different stress-regimens (chronic vs acute, nature of stress (lipotoxicity, redox stress, xenobiotic, starvation, etc));
  4. Different modes of Nrf2 or AMPK activation and inhibition (genetic vs pharmacological, constitutive vs transient/intermittent, systemic vs organ-specific, electrophilic vs PPI, allosteric vs covalent, or pan vs subtype-specific);
  5. Different target genes with distinct promoter and enhancer structure; or
  6. Different timing of activation.

The latter should deserve increased attention as Nrf2 is one of the most cycling genes under control of the circadian clock. Feeding behavior, metabolism and hence AMPK activity follow and substantiate the biological clock, indicating an entangled circadian regulation of metabolic and redox homeostasis.”

https://www.sciencedirect.com/science/article/pii/S089158492200497X “AMPK and NRF2: Interactive players in the same team for cellular homeostasis?”


A third citing paper was a study of lens cells that provided an example of similar metformin effects noted in Part 2 of Broccoli sprouts activate the AMPK pathway:

“Loss of Nrf2 and Nrf2 antioxidant genes expression and activity in aging cells leads to an array of oxidative-induced deleterious responses, impaired function, and aging pathologies. This deterioration is proposed to be the primary risk factor for age-related diseases such as cataracts.

AMPK regulates energy at physiological levels during metabolic imbalance and stress. AMPK is a redox sensing molecule, and can be activated under cellular accumulation of reactive oxygen species, which are endogenously produced due to loss of antioxidant enzymes.

The therapeutic potential of AMPK activation has context-dependent beneficial effects, from cell survival to cell death. AMPK activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded metformin’s effect.

Using lens epithelial cell lines (LECs) of human or mouse aging primary LECs along with lenses as model systems, we demonstrated that metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. Results uncovered crosstalk between AMPK and Bmal1/Nrf2/antioxidants mediated by metformin for blunting oxidative/aging-linked pathobiology.”

https://www.mdpi.com/2073-4409/11/19/3021/htm “Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity”


PXL_20221027_185754842

If you were given a lens to see clearly, would you accept it?

Two papers, starting with a 2022 rodent study of maternal behaviors’ effects on offspring physiologies:

Early life adversity (ELA) is a major risk factor for development of pathology. Predictability of parental care may be a distinguishing feature of different forms of ELA.

We tested the hypothesis that changes in maternal behavior in mice would be contingent on the type of ELA experienced, directly comparing predictability of care in the limited bedding and nesting (LBN) and maternal separation (MS) paradigms. We then tested whether predictability of the ELA environment altered expression of corticotropin-releasing hormone (Crh), a sexually-dimorphic neuropeptide that regulates threat-related learning.

MS was associated with increased expression of Crh-related genes in males, but not females. LBN primarily increased expression of these genes in females, but not males.”

https://www.sciencedirect.com/science/article/pii/S2352289522000595 “Resource scarcity but not maternal separation provokes unpredictable maternal care sequences in mice and both upregulate Crh-associated gene expression in the amygdala”


I came across this first study by it citing a republished version of 2005 epigenetic research from McGill University:

“Early experience permanently alters behavior and physiology. A critical question concerns the mechanism of these environmental programming effects.

We propose that epigenomic changes serve as an intermediate process that imprints dynamic environmental experiences on the fixed genome resulting in stable alterations in phenotype. These findings demonstrate that structural modifications of DNA can be established through environmental programming and that, in spite of the inherent stability of this epigenomic marker, it is dynamic and potentially reversible.”

https://www.tandfonline.com/doi/full/10.31887/DCNS.2005.7.2/mmeaney “Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome”


This post commemorates the five-year anniversary of Dr. Arthur Janov’s death. Its title is taken from my reaction to his comment on Beyond Belief: Symptoms of hopelessness. Search his blog for mentions of the second paper’s coauthors, Drs. Meaney and Szyf.

PXL_20221010_104026908.NIGHT

All about walnuts’ effects

Five 2022 papers focusing on walnuts, starting with a comparison of eight tree nuts:

“The aim of the present study was to examine 8 different popular nuts – pecan, pine, hazelnuts, pistachio, almonds, cashew, walnuts, and macadamia. Total content of phenolic compounds in nuts ranged from 5.9 (pistachio) to 432.9 (walnuts) mg/100 g.

Walnuts had the highest content of polymeric procyanidins, which are of great interest as important compounds in nutrition and biological activity, as they exhibit antioxidant, anti-inflammatory, antimicrobial, cardio- and neuroprotective action. Walnuts are good sources of fatty acids, especially omega-3 and omega-6.”

https://www.sciencedirect.com/science/article/pii/S2590157522002164 “Nuts as functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties”


A second study compared the same eight tree nuts plus Brazil nuts and peanuts:

“The highest total content of all analyzed flavonoids was determined in walnuts (114.861 µg/g) with epicatechin the most abundant, while the lowest was in almonds (1.717 µg/g). Epicatechin has antioxidant, anti-inflammatory, antitumor, and anti-diabetic properties. Epicatechin has beneficial effects on the nervous system, enhances muscle performance, and improves cardiac function.”

https://www.mdpi.com/1420-3049/27/14/4326/htm “The Content of Phenolic Compounds and Mineral Elements in Edible Nuts”


Next, two systematic reviews and meta-analyses of human studies:

“We carried out a systematic review of cohort studies and randomized controlled trials (RCTs) investigating walnut consumption, compared with no or lower walnut consumption, including those with subjects from within the general population and those with existing health conditions, published from 2017 to 5 May 2021.

  • Evidence published since 2017 is consistent with previous research suggesting that walnut consumption improves lipid profiles and is associated with reduced CVD risk.
  • Evidence pointing to effects on blood pressure, inflammation, hemostatic markers, and glucose metabolism remains conflicting.
  • Evidence from human studies showing that walnut consumption may benefit cognitive health, which is needed to corroborate findings from animal studies, is now beginning to accumulate.”

https://academic.oup.com/nutritionreviews/advance-article/doi/10.1093/nutrit/nuac040/6651942 “Walnut consumption and health outcomes with public health relevance – a systematic review of cohort studies and randomized controlled trials published from 2017 to present”


“We aimed to perform a systematic review and meta-analysis of RCTs to thoroughly assess data concerning effects of walnut intake on selected markers of inflammation and metabolic syndrome in mature adults. Our findings showed that:

  • Walnut-enriched diets significantly decreased TG, TC, and LDL-C concentrations, while HDL-C levels were not significantly affected.
  • No significant changes were noticed on anthropometric, cardiometabolic, and glycemic indices after higher walnut consumption.
  • Inflammatory biomarkers did not record statistically significant results.”

https://www.mdpi.com/2076-3921/11/7/1412/htm “Walnut Intake Interventions Targeting Biomarkers of Metabolic Syndrome and Inflammation in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials”


Finishing with a rodent study that gave subjects diabetes with a high-fat diet, then mixed two concentrations of walnut extract in with the treatment groups’ chow:

“This study was conducted to evaluate the protective effect of Gimcheon 1ho cultivar walnut (GC) on cerebral disorder by insulin resistance, oxidative stress, and inflammation in HFD-induced diabetic disorder mice. After HFD feed was supplied for 12 weeks, samples were orally ingested for 4 weeks to GC20 and GC50 groups (20 and 50 mg/kg of body weight, respectively).

  • Administration of GC improved mitochondrial membrane potential function, and suppressed oxidative stress in the brain.
  • GC inhibited hepatic and cerebral lipid peroxidation and the formation of serum AGEs, and increased serum antioxidant activity to improve HFD-induced oxidative stress.
  • The HFD group showed significant memory impairment in behavioral tests. On the other hand, administration of GC showed improvement in spatial learning and memory function.

walnut brain effects

Based on these physiological activities, GC showed protective effects against HFD-induced diabetic dysfunctions through complex and diverse pathways.”

https://www.mdpi.com/1420-3049/27/16/5316/htm “Walnut Prevents Cognitive Impairment by Regulating the Synaptic and Mitochondrial Dysfunction via JNK Signaling and Apoptosis Pathway in High-Fat Diet-Induced C57BL/6 Mice”


How do you like my sand art?PXL_20221016_154923750

Minds of their own

It’s the weekend, so it’s time for: Running errands? Watching sports? Other conditioned behavior?

Or maybe broadening our cognitive ability with Dr. Michael Levin’s follow-ups to his 2021 Basal cognition paper and 2020 Electroceuticals presentation with a 2022 paper and presentation starting around the 13:30 mark:

Michael Levin - Cell Intelligence in Physiological and Morphological Spaces

“A homeostatic feedback is usually thought of as a single variable such as temperature or pH. The set point has been found to be a large-scale geometry, a descriptor of a complex data structure.”


His 2022 paper Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds:

“It is proposed that the traditional problem-solving behavior we see in standard animals in 3D space is just a variant of evolutionarily more ancient capacity to solve problems in metabolic, physiological, transcriptional, and morphogenetic spaces (as one possible sequential timeline along which evolution pivoted some of the same strategies to solve problems in new spaces).

Developmental bioelectricity works alongside other modalities such as gene-regulatory networks, biomechanics, and biochemical systems. Developmental bioelectricity provides a bridge between the early problem-solving of body anatomy and the more recent complexity of behavioral sophistication via brains.

This unification of two disciplines suggests a number of hypotheses about the evolutionary path that pivoted morphogenetic control mechanisms into cognitive capacities of behavior, and sheds light on how Selves arise and expand.

While being very careful with powerful advances, it must also be kept in mind that existing balance was not achieved by optimizing happiness or any other quality commensurate with modern values. It is the result of dynamical systems properties shaped by meanderings of the evolutionary process and the harsh process of selection for survival capacity.”


PXL_20220904_102050409

Epigenetic effects of plasma concentrate

“We use data from a safety study (n = 18, mean age 74) to investigate whether human umbilical cord plasma concentrate (hereinafter Plasma Concentrate) injected weekly (1 ml intramuscular) into elderly human subjects over a 10-week period affects different biomarkers, including epigenetic age measures, standard clinical biomarkers of organ dysfunction, mitochondrial DNA copy number (mtDNA-CN), and leukocyte telomere length.

More than 20 clinical biomarkers were significantly and beneficially altered. Telomere length and mtDNA-CN were not significantly affected by treatment.

An increase in entropy means that the methylome becomes noisier. We found that entropy was significantly decreased after treatment. Decreased entropy may implicate rejuvenation of the epigenetic landscape after plasma concentrate treatments.

changes in methylation entropy

Treatment reduced DNA methylation-based GrimAge by an average of 0.82 years, suggesting a reduction in morbidity and mortality risk. By contrast, no significant results could be observed for epigenetic clocks that estimate chronological age.

Our study lends credence to the notion that there are youth-promoting factors in the secretome of umbilical cord plasma. This conclusion has also been reached by other researchers that have provided treatment with stem cells, which do not work by plasma dilution but primarily by providing humoral factors and changing the microenvironment of cells and tissues. While there may be youth-promoting microvesicles or humoral factors that are at work, we do not want to rule out the possibility that it is ‘young and undamaged’ albumin that leads to the improvements noted, especially in light of recent evidence for such a mechanism.

This first human epigenetic clock study of plasma concentrate treatments revealed age-reversal effects according to a well-established DNA methylation-based estimator of morbidity and mortality risk. Future placebo-controlled replication studies are warranted with a larger number of participants over a longer study period, which our laboratory has undertaken to pursue.”

https://onlinelibrary.wiley.com/doi/10.1111/acel.13696 “Umbilical cord plasma concentrate has beneficial effects on DNA methylation GrimAge and human clinical biomarkers”


PXL_20220903_101625819

Glucoraphanin is not sulforaphane

A poorly-conceived and intentionally-misrepresented human 2022 broccoli product study:

“We investigated whether a sulforaphane (SFN) [actually, sulforaphane precursor glucoraphanin] intake intervention improved cognitive performance and mood states in healthy older adults in a 12-week, double-blinded, randomized controlled trial.

The SFN group showed improvement in processing speed and a decrease in negative mood compared to the placebo group. However, there were no significant results in other biomarkers of oxidant stress, inflammation, or neural plasticity.

These results indicate that nutrition interventions using SFN can have positive effects on cognitive functioning and mood in healthy older adults.”

https://www.frontiersin.org/articles/10.3389/fnagi.2022.929628/full “Effects of sulforaphane intake on processing speed and negative moods in healthy older adults: Evidence from a randomized controlled trial”


Contrary to this study’s title, actual sulforaphane intake was not measured. The glucoraphanin product used in this study was the same item and daily dose as Eat broccoli sprouts for your workouts, which investigated effects with 19-to-23-year-old men. The treatment was taken all at once at an unspecified time of day rather than three times a day with young subjects.

These researchers knew from the 2012 study cited for dose that:

“Individual conversions of glucosinolates [like glucoraphanin] to isothiocyanates [like sulforaphane] varied enormously, from about 1% to more than 40% of dose. In contrast, administration of isothiocyanates (largely sulforaphane)-containing broccoli sprout extracts, resulted in uniformly high (70-90%) conversions to urinary dithiocarbamates.”

Young or old, a daily 30 mg glucoraphanin intake isn’t sufficient to fully activate human Nrf2 signaling pathways. A daily 17 mg sulforaphane intake could accomplish that.


PXL_20220819_101050766

Don’t bother eating broccoli sprouts if you’re old?

I try to not curate research that wastes resources. Couldn’t help but present this 2022 rodent study:

“We aimed to evaluate if sulforaphane (SFN) long-term treatment was able to prevent age-associated cognitive decline in adult (15-month-old) and old (21-month-old) female and male rats.

Our results showed that SFN restored redox homeostasis in brain cortex and hippocampus of adult rats, preventing cognitive decline in both sexes. However, redox responses were not the same in males and females.

Old rats were not able to recover their redox state as adults did, but they had a mild improvement. These results suggest that SFN mainly prevents rather than reverts neural damage; though, there might also be a range of opportunities to use hormetins like SFN, to improve redox modulation in old animals.”

https://link.springer.com/article/10.1007/s10522-022-09984-9 “Long-term sulforaphane-treatment restores redox homeostasis and prevents cognitive decline in middleaged female and male rats, but cannot revert previous damage in old animals” (not freely available)


These researchers cited Sulforaphane in the Goldilocks zone for hormetic effects of sulforaphane, so I asked:

“Did you develop any preliminary dose/response data for stating ‘there might also be a range of opportunities to use hormetins like SFN to improve redox modulation in old animals’?”

They cited Broccoli sprouts activate the AMPK pathway for long-term effects of a small sulforaphane dose, so I asked:

“Also, the three studies cited for ‘0.5 mg/Kg, i.e. 2.82 μmol/Kg BW for 3 months’ were all mouse studies. Since this was a rat study, wouldn’t there be increased dose and duration equivalencies?”

I’ll update this blog post in the event either of my questions to these researchers are answered.

PXL_20220819_101656448

Non-patentable boron benefits

To follow up Is boron important to health? I’ll highlight a 2022 review of boron intake:

“Boron is essential for activity of several metabolic enzymes, hormones, and micronutrients. It is important for growth and maintenance of bone, reduction in inflammatory biomarkers, and increasing levels of antioxidant enzymes.

The average person’s daily diet contains 1.5 to 3 milligrams of boron. Boron intakes of 1–3 mg/day have been shown to improve bone and brain health in adults when compared to intakes of 0.25–0.50 mg/day.

One week of 10 mg/d boron supplementation resulted in a 20% reduction in inflammatory biomarkers TNF-α, as well as significant reductions (nearly 50%) in plasma concentrations of hs-CRP and IL-6. Calcium fructoborate, a naturally occurring, plant-based boron-carbohydrate complex, had beneficial effects on osteoarthritis (OA) symptoms. A double-blind study in middle-aged patients with primary OA found that all groups except the placebo group saw a reduction in inflammatory biomarkers after 15 days of food supplementation with calcium fructoborate.

Dietary boron intake significantly improves brain function and cognitive functioning in humans. Electroencephalograms showed that boron pharmacological intervention after boron deficiency improved functioning in older men and women, such as less drowsiness and mental alertness, better psychomotor skills (for example, motor speed and dexterity), and better cognitive processing (e.g., attention and short-term memory). Boron compounds can help with both impaired recognition and spatial memory problems.

We discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. Boron reagents will play a significant role to improve dysbiosis.”

https://www.mdpi.com/1420-3049/27/11/3402/htm “The Role of Microbiome in Brain Development and Neurodegenerative Diseases”


PXL_20220814_101418757

If you lose mobility, you lose cognitive function

This 2022 human study used four epigenetic clocks to assess aging:

“This cohort study was a secondary analysis of 3 Women’s Health Initiative (WHI) ancillary studies among 1813 women eligible to survive to age 90 years by end of study period. The study found that increased epigenetic age acceleration (EAA) as measured by 4 epigenetic clocks was associated with lower odds of survival to age 90 years with intact mobility; results were similar when including intact cognitive functioning.

This study benefited from a large, racially and ethnically diverse sample of women who were followed up to at least age 90 years with detailed longitudinal data on a host of lifestyle and health history factors. This study is generalizable to WHI women owing to use of IPW weights, and may be generalizable to a large range of women in the United States.

zoi220662t1_1658260078.05222

Among 1813 women, there were:

  • 464 women who survived to age 90 years with intact mobility and cognitive functioning;
  • 420 women who survived to age 90 years without intact mobility and cognitive functioning; and
  • 929 women who did not survive to age 90 years.

Only 29 women were reclassified from the healthy longevity group to surviving to age 90 years without intact mobility and cognitive functioning. Although it was of great interest to investigate the association between EAA and survival to age 90 years with intact cognitive function independently, this study population did not have sufficient numbers of women who experienced loss of cognitive function (without loss of mobility) to do so.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2794706 “Analysis of Epigenetic Age Acceleration and Healthy Longevity Among Older US Women”


Early humans who lost mobility in our African savanna ancestral environment during the Pleistocene Epoch (approximately 2.6M to 12K years ago) were prey. I highly doubt that immobile individuals successfully became our ancestors.

I downgraded this study because these researchers misguidedly soiled worthwhile findings with BMI and education level non-causal associations. They intentionally did this, as several of them were coauthors of the execrable Epigenome-wide meta-analysis of BMI in nine cohorts: examining the utility of epigenetic BMI in predicting metabolic health.

See Findings, or fun with numbers? and Does a societal mandate cause DNA methylation? for opposing research.


PXL_20220813_102515183

Broccoli sprouts and your brain

A 2022 review of Nrf2 signaling hilariously avoided mentioning sulforaphane, although of ~4,000 sulforaphane published articles, two were cited. I’ll curate it anyway to highlight referenced brain effects.

“A good stability of NRF2 activity is crucial to maintain redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, ageing, and ageing-related neurodegenerative diseases.

A functional NRF2 system is important to regulate both neuroinflammation, i.e., activation of microglia and astrocytes, and oxidative stress in the brain. NRF2 and NF-κB transcription factors regulate cellular responses to inflammation and oxidative stress in order to maintain brain homeostasis. Both pathways have been described to inhibit each other.

Nrf2 brain aging

Future challenges will be to establish novel therapies to:

  • Increase NRF2 activation in specific cell types and/or brain regions; and
  • Modulate NRF2 pathway in senescent cells.

Modulation of NRF2 signalling pathway by using specific food products [like unmentioned broccoli sprouts] and phytochemicals [like unmentioned sulforaphane], dietary supplements [like unmentioned Vitamin D3], drugs, and epigenetic modifiers, alone or in combination, will help to limit inflammatory diseases, ageing process, and subsequently ageing-related diseases.”

https://www.mdpi.com/2076-3921/11/8/1426/htm “Normal and Pathological NRF2 Signalling in the Central Nervous System”


PXL_20220808_095334058

Trained immunity epigenetics

Two papers on trained immunity, starting with a 2022 review:

“Live attenuated vaccines such as the Bacillus Calmette–Guérin, measles-containing vaccines, and the oral polio vaccine have been shown to reduce overall mortality beyond their effects attributable to the targeted diseases.

After an encounter with a primary stimulus, epigenetic and metabolic reprogramming of bone marrow progenitor cells and functional changes of tissue immune cell populations result in augmented immune responses against a secondary challenge. This process has been termed trained immunity.

Main epigenetic events during induction of trained immunity are:

  1. Chromosomal reorganization on the level of topologically associated domains;
  2. Induction of long noncoding RNA activity;
  3. Histone modifications and chromatin accessibility; and
  4. DNA (de)methylation.

trained immunity mechanisms

An epigenetic enzyme belonging to the lysine methyltransferase family, Set7, possesses vital function in β-glucan training of monocytes. When inhibited, trained immunity phenotype is diminished, while Set7 deficient mice cannot establish innate immune memory.

β-glucan is recognized by Dectin-1, and has been known to lead to a shift from oxidative phosphorylation (OXPHOS) to glycolysis as an ATP source. However, a more recent study reported an increase in both glycolysis and oxygen consumption following training, which signals a higher rate of OXPHOS. This discrepancy is explained by the difference in concentration of β-glucan used in the experiments.

Stopping vaccination with measles and polio once the pathogens are eradicated, or replacing live attenuated polio with inactivated polio, should be done with caution, as it may have a substantial impact on childhood mortality. Trained immunity may also represent an important new approach to improve current vaccines, or to develop novel vaccines that combine induction of classical adaptive immune memory and innate immune memory.”

https://www.sciencedirect.com/science/article/pii/S0952791522000371 “Trained immunity: implications for vaccination”


Reference 34 was a 2020 study by two of the same coauthors that provided details on the above discrepancy:

“Findings presented by the current study suggest that the disparity in terms of the role of OXPHOS arises from the stimulatory dose of β-glucan [by intraperitoneal injection]. A β-glucan concentration of 1 μg/mL induces both glycolysis and OXPHOS, whereas a concentration of 10 μg/mL induces glycolysis but inhibits OXPHOS.”

https://www.cell.com/cell-reports/fulltext/S2211-1247(20)30458-7 “The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan”


PXL_20220728_094358955.NIGHT

The goddess of rainbows

Two 2022 papers, starting with a review of irisin:

“This article is an overview of irisin generation, secretion, and tissue distribution. Its targeting of tissues or organs for prevention and treatment of chronic diseases is systematically summarized, with discussion of underlying molecular mechanisms.

Irisin is an exercise-induced myokine expressed as a bioactive peptide in multiple tissues and organs. Exercise and cold exposure are major inducers for its secretion.

Mechanistic studies confirm that irisin is closely correlated with lipid metabolism, insulin resistance, inflammation, ROS, endocrine, neurotrophic factors, cell regeneration and repairing, and central nervous system regulation. Irisin decreases with age, and is closely associated with a wide range of aging-related diseases.

A number of studies in elderly humans and animal models have shown that exercise can promote the body’s circulation and increase irisin levels in some tissues and organs. Resistance, aerobic, or combined exercise seem to play a positive role. However, exercise could not change serum irisin in some reported studies.

irisin human studies

There are large individual differences in exercise training in the elderly population. Since the half-life of irisin in the body is less than 1 h, it is necessary to pay attention to the time of blood sampling after a single exercise intervention. Some factors that impede detection of irisin levels in vivo include the half-life of irisin protein, sampling time, different tissues, and different health statuses before and after intervention.

It is worth noting that high-intensity exercise shows higher irisin levels even with the same energy expenditure during exercise. Precision studies of irisin in elderly subjects following exercise intervention need to be further clarified.”

https://www.sciencedirect.com/science/article/pii/S1568163722001222 “Irisin, An Exercise-induced Bioactive Peptide Beneficial for Health Promotion During Aging Process” (not freely available) Thanks to Dr. Ning Chen for providing a copy.


A second paper was a human study too recent to be cited by the first paper. I’ll highlight its irisin findings:

“We investigated the complex relationship among DNAm based biomarkers of aging, including DNAmFitAge, a variety of physiological functioning variables, blood serum measures including cholesterol, irisin level, and redox balance, and the microbiome on 303 healthy individuals aged between 33 and 88 years with a diverse level of physical fitness. Regular exercise was associated with younger biological age, better memory, and more protective blood serum levels.

Our research intends to show that regular physical exercise is related to microbiota and methylation differences which are both beneficial to aging and measurable. Our research provides the first investigation between microbiome derived metabolic pathways and DNAm based aging biomarkers.

Irisin levels decrease with age (0.23 average decrease for every 1 year older). We found age-related decreases in irisin levels were attenuated by exercise training. The link between irisin to GrimAge Acceleration and FitAge Acceleration is a novel observation.

HDL is positively associated with irisin. HDL and irisin have complex roles in physiology, and the positive relationship we observe between physical exercise and HDL and irisin align with protective effects seen between HDL and irisin with glucose homeostasis.

This work further supports the biological importance of irisin to the aging process. It is possible our research motivates interventions to boost irisin, like through physical exercise, as possible anti-aging therapies.”

https://www.medrxiv.org/content/10.1101/2022.07.22.22277842v1 “DNA methylation clock DNAmFitAge shows regular exercise is associated with slower aging and systemic adaptation


PXL_20220725_095201761