Epigenetic effects of early life stress exposure

This 2017 Netherlands review subject was the lasting epigenetic effects of early-life stress:

“Exposure to stress during critical periods in development can have severe long-term consequences..One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis..early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood.

ELS is able to “imprint” or “program” an organism’s neuroendocrine, neural and behavioral responses to stress..research focuses along two complementary lines.

Firstly, ELS during critical stages in brain maturation may disrupt specific developmental processes (by altered neurotransmitter exposure, gene transcription, or neuronal differentiation), leading to aberrant neural circuit function throughout life..

Secondly, ELS may induce modifications of the epigenome which lastingly affect brain function..These epigenetic modifications are inducible, stable, and yet reversible, constituting an important emerging mechanism by which transient environmental stimuli can induce persistent changes in gene expression and ultimately behavior.”

In early life, the lower brain and limbic system brain structures are more developed and dominant, whereas the cerebrum and other brain structures are less developed (use the above graphic as a rough guide). Stress and pain generally have a greater impact on the fetus, then the infant, and then the adult.

The reviewers cited 50+ studies from years 2000-2015 in the “Early Life Stress Effects in a “Matching” Stressful Adult Environment” section to argue for the match/mismatch theory:

“Encountering ELS prepares an organism for similar (“matching”) adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context.

Initial evidence for HPA-axis hypo-reactivity is observed for early social deprivation, potentially reflecting the abnormal HPA-axis function as observed in post-traumatic stress disorder.

Interestingly, experiencing additional (chronic) stress in adulthood seems to normalize these alterations in HPA-axis function, supporting the match/mismatch theory.”

Evidence for this theory was contrasted with the allostatic load theory presented in, for example, How one person’s paradigms regarding stress and epigenetics impedes relevant research.

The review mainly cites evidence from rodent studies that mismatched reactions in adulthood may be consequences of early-life events. These events:

“..imprint or program an organism’s neuroendocrine, neural and behavioral responses..leading to aberrant neural circuit function throughout life..which lastingly affect brain function..”

Taking this research to a personal level:

  • Have you had feelings that you were unsafe, although your environment was objectively safe?
  • Have you felt uneasy when people are nice to you?
  • Have you felt anxious when someone pays attention to you, even after you’ve acted to gain their attention?

I assert that mismatched human feelings are one form of mismatched reactions. As such, they may be interpreted as consequences of early-life experiences, and indicators of personal truths.

If researchers can let go of their biases and Advance science by including emotion in research, they may find that human subjects’ feelings produce better evidence for what actually happened during the subjects’ early lives than do standard scientific methods of:

Incorporating this evidence may bring researchers closer to backwardly predicting the major insults to an individual that knocked their development processes out of normally robust pathways and/or induced “persistent changes in gene expression and ultimately behavior.”

https://www.frontiersin.org/articles/10.3389/fncel.2017.00087/full “Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure”

I discovered this review as a result of it being cited in http://www.sciencedirect.com/science/article/pii/S1084952117302884 “Long-term effects of early environment on the brain: Lesson from rodent models” (not freely available)


Prisoners of our childhoods

Same old shit – another failed relationship.

Coincident with the start of our relationship, I was struck by a phrase by Dr. Janov, posted in Beyond Belief: What we do instead of getting well:

“It doesn’t matter about the facts we know..if we cannot maintain a relationship with someone else.”

I kept that thought in the forefront.

Both of us are prisoners of our childhoods. I’ve tried to see and feel the walls and bars for what they are.

J hadn’t tried to process the reality of her childhood and life. For example, on her birthday, June 19, I asked her how she celebrated her birthdays when she was growing up. She provided a few details, then mentioned that her parents had skipped some of her birthdays. Although I had no immediate reaction, she quickly said that she had a happy childhood.

I was at fault, too, of course. I again asked a woman to marry me who hadn’t ever told me she loved me, except in jest.

I asked J to marry me around the six-month point of our relationship. I felt wonderful, in love with her that August morning after she slept with me at my house. I made an impromptu plan: in the middle of a four-mile walk, I asked her to marry me while kneeling before her as she sat on a bench outside a jewelry store. But she wouldn’t go in to choose a ring. She said she’d think about it.

A month later, after several dates, sleepovers at her house, and a four-day trip to Montreal, I again brought up marriage while we rested on her large couch in her nice sun room. The thing I felt would be wonderful brought about the end.

I tried to understand why she couldn’t accept me for the person who I intentionally showed her I am. She abstracted everything that she said. I tried to get her to identify why, after all the times we cared for each other, after all our shared experiences, she didn’t want me around anymore.

Didn’t happen. She didn’t tell me things that made sense as answers to my questions.

One thing she said without abstraction was that I was weak for showing my feelings. She told me I was clingy.

Another thing she communicated at the end shocked me. She somehow thought that I was going to dump her. I said that the thought never even crossed my mind.

I didn’t recognize it as projection at the time. Prompted by her underlying feelings, she attributed to me the actions and thoughts that only she herself had.

One thing I’ve felt after the end was that the need underlying my only stated relationship goal – to live with a woman I love who also loves me – is again ruining my life. My latest efforts towards that goal were rife with unconscious symbolic act outs of an unsatisfied need from my early life.

That unrelenting need is for a woman’s love, but it’s deviated in that somehow she’s always one who doesn’t accept me as I am, and doesn’t love me. My cell is what Dr. Janov calls the imprint that I – as an infant, boy, teenager, young man, middle-aged man, old man – retreat to after my futile attempts to change the past.

I’ve tried to put myself in J’s place. How horrible must it have been for her to be steadily intimate with a man and not feel that his touches, kisses, words, affection, expressed love? That he couldn’t really love me, and I therefore couldn’t love him? That he was actually after something else: sex, property, etc., because it was impossible that he loved me?

“Standing next to me in this lonely crowd
Is a man who swears he’s not to blame
All day long I hear him shout so loud
Crying out that he was framed
I see my light come shining
From the west unto the east
Any day now, any day now
I shall be released”

On Primal Therapy with Drs. Art and France Janov

Experiential feeling therapy addressing the pain of the lack of love.

Epigenetic remodeling creates immune system memory

Innate immune memory

This 2016 German review was of the memory characteristics of immune cells:

“Innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions.

Evidence is rapidly accumulating that innate immune cells can adopt a persistent pro-inflammatory phenotype after brief exposure to a variety of stimuli, a phenomenon that has been termed ‘trained innate immunity.’ The epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.”

The reviewers focused on the particular example of atherosclerosis, although other examples were discussed of epigenetic remodeling to acquire immune memory:

“In the last ten years, several novel non-traditional risk factors for atherosclerosis have been identified that are all associated with activation of the immune system. These include chronic inflammatory diseases such as:

as well as infections with bacteria or viruses.”

The reviewers also discussed diet, mainly of various diets’ negative effects. On the positive side, I was interested to see a study referenced that used a common dietary supplement:

“Pathway analysis of the promoters that were potentiated by β-glucan identified several innate immune and signaling pathways upregulated in trained cells that are responsible for the induction of trained immunity.”

Other research into the epigenetic remodeling of immune system memory includes:

http://www.sciencedirect.com/science/article/pii/S1044532316300185 “Long-term activation of the innate immune system in atherosclerosis”

Observing pain in others had long-lasting brain effects

This 2016 Israeli human study used whole-head magnetoencephalography (MEG) to study pain perception in military veterans:

Our findings demonstrate alterations in pain perception following extreme pain exposure, chart the sequence from automatic to evaluative pain processing, and emphasize the importance of considering past experiences in studying the neural response to others’ states.

Differences in brain activation to ‘pain’ and ‘no pain’ in the PCC [posterior cingulate cortex] emerged only among controls. This suggests that prior exposure to extreme pain alters the typical brain response to pain by blurring the distinction between painful and otherwise identical but nonpainful stimuli, and that this blurring of the ‘pain effect’ stems from increased responses to ‘no pain’ rather than from attenuated response to pain.”

Limitations included:

  • “The pain-exposed participants showed posttraumatic symptoms, which may also be related to the observed alterations in the brain response to pain.
  • We did not include pain threshold measurements. However, the participants’ sensitivity to experienced pain may have had an effect on the processing of observed pain.
  • The regions of interest for the examination of pain processing in the pain-exposed group were defined on the basis of the results identified in the control group.
  • We did not detect pain-related activations in additional regions typically associated with pain perception, such as the anterior insula and ACC. This may be related to differences between the MEG and fMRI neuroimaging approaches.”

The subjects self-administered oxytocin or placebo per the study’s design. However:

“We chose to focus on the placebo condition and to test group differences at baseline only, in light of the recent criticism on underpowered oxytocin administration studies, and thus all following analyses are reported for the placebo condition.”

A few questions:

  1. If observing others’ pain caused “increased responses to ‘no pain’,” wouldn’t the same effect or more be expected from experiencing one’s own pain?
  2. If there’s evidence for item 1, then why aren’t “increased responses to ‘no pain'” of affected people overtly evident in everyday life?
  3. If item 2 is often observed, then what are the neurobiological consequences for affected people’s suppression of “increased responses to ‘no pain’?”
  4. Along with the effects of item 3, what may be behavioral, emotional, and other evidence of this suppressed pain effect?
  5. What would it take for affected people to regain a normal processing of others’ “‘pain’ and ‘no pain’?”

https://www.researchgate.net/publication/299546838_Prior_exposure_to_extreme_pain_alters_neural_response_to_pain_in_others “Prior exposure to extreme pain alters neural response to pain in others” Thanks to one of the authors, Ruth Feldman, for providing the full study

A review that inadvertently showed how memory paradigms prevented relevant research

This 2016 Swiss review of enduring memories demonstrated what happens when scientists’ reputations and paychecks interfered with them recognizing new research and evidence in their area but outside their paradigm: “A framework containing the basic assumptions, ways of thinking, and methodology that are commonly accepted by members of a scientific community.”

1. Most of the cited references were from decades ago that established these paradigms of enduring memories. Fine, but the research these paradigms precluded was also significant.

2. All of the newer references were continuations of established paradigms. For example, a 2014 study led by one of the reviewers found:

“Successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones.

Recalling remote memories fails to induce histone acetylation-mediated plasticity.”

The researchers elected to pursue a workaround of the memory reconsolidation paradigm when the need for a new paradigm of enduring memories confronted them directly.

3. None of the reviewers’ calls for further investigations challenged existing paradigms. For example, when the reviewers suggested research into epigenetic regulation of enduring memories, they somehow found it best to return to 1984, a time when dedicated epigenetics research had barely begun:

“Whether memories might indeed be ‘coded in particular stretches of chromosomal DNA’ as originally proposed by Crick [in 1984] and if so what the enzymatic machinery behind such changes might be remain unclear. In this regard, cell population-specific studies are highly warranted.”

As an example of relevant research the review failed to consider, the 2015 Northwestern University study I curated in A study that provided evidence for basic principles of Primal Therapy went outside existing paradigms to research state-dependent memories:

“If a traumatic event occurs when these extra-synaptic GABA receptors are activated, the memory of this event cannot be accessed unless these receptors are activated once again.

It’s an entirely different system even at the genetic and molecular level than the one that encodes normal memories.”

What impressed me about the study was the obvious nature of its straightforward experimental methods. Why hadn’t other researchers used the same methods decades ago? Doing so could have resulted in dozens of informative follow-on study variations by now, which is my point in item 1 above.

The 2015 French What can cause memories that are accessible only when returning to the original brain state? was another relevant but ignored study that supported state-dependent memories:

“Posttraining/postreactivation treatments induce an internal state, which becomes encoded with the memory, and should be present at the time of testing to ensure a successful retrieval.”

The review also showed the extent to which historical memory paradigms depended on the subjects’ emotional memories. When it comes to human studies, though, designs almost always avoid studying emotional memories.

It’s clearly past time to Advance science by including emotion in research.

http://www.hindawi.com/journals/np/2016/3425908/ “Structural, Synaptic, and Epigenetic Dynamics of Enduring Memories”

What’s a good substitute for feeling loved?

A friend of mine sent a link to this TED talk yesterday. The speaker inspired my friend to change their life along the speaker’s guidelines:

“The very act of doing the thing that scared me undid the fear.

That feeling, you can’t help but strive for greatness at any cost.

The more I work to be successful, the more I need to work.”

I wasn’t similarly inspired. Evidence doesn’t support that a fear memory is undone by behavior that covers it over and tamps it down. What I saw expressed in the TED talk was an exhausting pursuit of substitutes for feeling loved.

This February 18 blog post by Dr Arthur Janov framed the TED talk in the context that I understood the speaker:

“Most of us thought that once we choose a profession and follow it and succeed at it, becoming an expert and well known, that would be fulfilling. We would feel like a success.

Success is not a feeling, loved is.

Fame is other people’s idea of success; it is in a way their feeling…admiration, humbling, important, etc.

And why does the person, even most accomplished, never feel satisfied nor fulfilled?”

What do you feel is the appropriate context of the TED talk? What do you think are likely outcomes of a person following the speaker’s guidelines?