Blood pressure and pain

A trio of papers, with the second and third citing a 2013 review:

“The relationship between pain and hypertension is potentially of great pathophysiological and clinical interest, but is poorly understood. Perception of acute pain initially plays an adaptive role, which results in prevention of tissue damage.

The consequence of ascending nociception is recruitment of segmental spinal reflexes through physiological neuronal connections:

  • In proportion to magnitude and duration of the stimulus, these spinal reflexes cause sympathetic nervous system activation, which increases peripheral resistances, heart rate, and stroke volume; and
  • The response also involves the neuroendocrine system, in particular, the hypothalamic-pituitary-adrenal axis, in addition to further activation of the sympathetic system by adrenal glands.

Persistent pain tends to become chronic and to increase BP values. After a long time, dysfunction of release of endogenous opioids results in a reduction of their analgesic effect. A vicious circle is established, where further pain leads to a reduction in pain tolerance, associated with decreased analgesia mediated by baroreceptors, in a kind of process of exhaustion.”

https://onlinelibrary.wiley.com/doi/epdf/10.1111/jch.12145 “The Relationship Between Blood Pressure and Pain”


A second paper was a 2021 human experimental pain study:

“We investigated the effectiveness of physiological signals for automatic pain intensity estimation that can either substitute for, or complement patients’ self-reported information. Results indicate that for both subject-independent and subject-dependent scenarios, electrodermal activity (EDA) – which is also referred to as skin conductance (SC) or galvanic skin response – was the best signal for pain intensity estimation.

EDA gave mean absolute error (MAE) = 0.93 using only 3 time-series features:

  1. Time intervals between successive extreme events above the mean;
  2. Time intervals between successive extreme events below the mean; and
  3. Exponential fit to successive distances in 2-dimensional embedding space.

Although we obtained good results using 22 EDA features, we further explored to see if we could reach similar or better results with fewer EDA features. This plot highlights that by considering only the top 3 features, we obtained the same level of performance given by all 22 features together.

journal.pone.0254108.g002

This is the first study that achieved less than 1-unit error for continuous pain intensity estimation using only one physiological sensor’s 3 time-series feature, and a Support Vector Regression machine learning model. Considering that this is an encouraging result, we can estimate objective pain using only the EDA sensor, which needs neither a complex setup nor a complex computationally intense machine learning algorithm.

This study paves the way for developing a smart pain measurement wearable device that can change the quality of pain management significantly.”

https://doi.org/10.1371/journal.pone.0254108 “Exploration of physiological sensors, features, and machine learning models for pain intensity estimation”


A third paper was a 2020 human rotator cuff surgery study:

“Results of our study demonstrated that:

  • Pain during the early postoperative period;
  • Time until occurrence of a retear; and
  • Existence of hypertension

were correlated with severity of pain in patients with a retorn rotator cuff.

Pain was selected as the sole outcome parameter of this study because:

  • Pain is an important factor that compels patients to seek treatment for rotator cuff tears, along with functional disability;
  • Pain and subjective functional deficits are important factors that influence a surgeon’s decision to continue with treatment in cases of retearing; and
  • Analyzing pain severity can be a good way to determine patients’ overall satisfaction after rotator cuff repair.

However, pain is not always correlated with disease severity or tear size and vice versa. A lack of pain does not necessarily depend on integrity of the repaired tendon or constitute a good prognosis. In fact, patients with partial-thickness rotator cuff tears showed more pain than did those with full-thickness tears.

Existence of hypertension had a proportional relationship with pain at 12 months postoperatively in patients with retears. This can be interpreted as a suggestion that pain in patients with retears is not acute, but rather chronic, and may be connected to pain in the early postoperative period at 3 months. However, results of this study cannot explain benefits of controlling hypertension in alleviating pain in patients with retears.”

https://journals.sagepub.com/doi/10.1177/2325967120947414 “Factors Related to Pain in Patients With Retorn Rotator Cuffs: Early Postoperative Pain Predicts Pain at 12 Months Postoperatively”


PXL_20210722_100353787

Gut and brain health

This 2021 human review subject was interactions of gut health and disease with brain health and disease:

“Actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids (SCFAs), tryptophan, and bile acid metabolites / pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour.

Dietary fibres, proteins, and fats ingested by the host contain components which are metabolized by microbiota. SCFAs are produced from fermentation of fibres, and tryptophan-kynurenine (TRP-KYN) metabolites from dietary proteins. Primary bile acids derived from liver metabolism aid in lipid digestion, but can be deconjugated and bio-transformed into secondary bile acids.

1-s2.0-S0149763421001032-gr1

One of the greatest challenges with human microbiota studies is making inferences about composition of colonic microbiota from faeces. There are known differences between faecal and caecal microbiota composition in humans along with spatial variation across the gastrointestinal tract.

It is difficult to interpret microbiome-host associations without identifying the driving influence in such an interaction. Large cohort studies may require thousands of participants on order to reach 20 % explanatory power for a certain host-trait with specific microbiota-associated metrics (Shannon diversity, relative microbial abundance). Collection of metadata is important to allow for a better comparison between studies, and to identify differentially abundant microbes arising from confounding variables.”

https://www.sciencedirect.com/science/article/pii/S0149763421001032 “Mining Microbes for Mental Health: Determining the Role of Microbial Metabolic Pathways in Human Brain Health and Disease”


Don’t understand why these researchers handcuffed themselves by only using PubMed searches. For example, two papers were cited for:

“Conjugated and unconjugated bile acids, as well as taurine or glycine alone, are potential neuroactive ligands in humans.”

Compare scientific coverage of PubMed with Scopus:

  • 2017 paper: PubMed citations 39; Scopus citations 69.
  • 2019 paper: PubMed citations 69; Scopus citations 102.

Large numbers of papers intentionally missing from PubMed probably influenced this review’s findings, such as:

  1. “There are too few fibromyalgia and migraine microbiome-related studies to make definitive conclusions. However, one fibromyalgia study found altered microbial species associated with SCFA and tryptophan metabolism, as well as changes in serum levels of SCFAs. Similarly, the sole migraine-microbiota study reported an increased abundance of the kynurenine synthesis GBM (gut-brain module).
  2. Due to heterogeneity of stroke and vascular disease conditions, it is difficult to make substantial comparisons between studies. There is convincing evidence for involvement of specific microbial genera / species and a neurovascular condition in humans. However, taxa were linked to LPS biosynthesis rather than SCFA production.
  3. Several studies suggest lasting microbial changes in response to prenatal or postnatal stress, though these do not provide evidence for involvement of SCFA, tryptophan, or bile-acid modifying bacteria. Similar to stress, there are very few studies assessing impact of post-traumatic stress disorder on microbiota.”

These researchers took on a difficult task. Their study design could have been better.


PXL_20210628_095746132

Wildlife

PXL_20210710_100826663

Take acetyl-L-carnitine for early-life trauma

This 2021 rodent study traumatized female mice during their last 20% of pregnancy, with effects that included:

  • Prenatally stressed pups raised by stressed mothers had normal cognitive function, but depressive-like behavior and social impairment;
  • Prenatally stressed pups raised by control mothers did not reverse behavioral deficits; and
  • Control pups raised by stressed mothers displayed prenatally stressed pups’ behavioral phenotypes.

Acetyl-L-carnitine (ALCAR) protected against and reversed depressive-like behavior induced by prenatal trauma:

alcar regime

ALCAR was supplemented in drinking water of s → S mice either from weaning to adulthood (3–8 weeks), or for one week in adulthood (7–8 weeks). ALCAR supplementation from weaning rendered s → S mice resistant to developing depressive-like behavior.

ALCAR supplementation for 1 week during adulthood rescued depressive-like behavior. One week after ALCAR cessation, however, the anti-depressant effect of ALCAR was diminished.

Intergenerational trauma induces social deficits and depressive-like behavior through divergent and convergent mechanisms of both in utero and early-life parenting environments:

  • We establish 2-HG [2-hydroxyglutaric acid, a hypoxia and mitochondrial dysfunction marker, and an epigenetic modifier] as an early predictive biomarker for trauma-induced behavioral deficits; and
  • Demonstrate that early pharmacological correction of mitochondria metabolism dysfunction by ALCAR can permanently reverse behavioral deficits.”

https://www.nature.com/articles/s42003-021-02255-2 “Intergenerational trauma transmission is associated with brain metabotranscriptome remodeling and mitochondrial dysfunction”


Previously curated studies cited were:

This study had an effusive endorsement of acetyl-L-carnitine in its Discussion section, ending with:

“This has the potential to change lives of millions of people who suffer from major depression or have risk of developing this disabling disorder, particularly those in which depression arose from prenatal traumatic stress.”

I take a gram daily. Don’t know about prenatal trauma, but I’m certain what happened during my early childhood.

I asked both these researchers and those of Reference 70 for their estimates of a human equivalent to “0.3% ALCAR in drinking water.” Will update with their replies.


PXL_20210704_095621886

Treat your gut microbiota as one of your organs

Two 2021 reviews covered gut microbiota. The first was gut microbial origins of metabolites produced from our diets, and mutual effects:

“Gut microbiota has emerged as a virtual endocrine organ, producing multiple compounds that maintain homeostasis and influence function of the human body. Host diets regulate composition of gut microbiota and microbiota-derived metabolites, which causes a crosstalk between host and microbiome.

There are bacteria with different functions in the intestinal tract, and they perform their own duties. Some of them provide specialized support for other functional bacteria or intestinal cells.

Short-chain fatty acids (SCFAs) are metabolites of dietary fibers metabolized by intestinal microorganisms. Acetate, propionate, and butyrate are the most abundant (≥95%) SCFAs. They are present in an approximate molar ratio of 3 : 1 : 1 in the colon.

95% of produced SCFAs are rapidly absorbed by colonocytes. SCFAs are not distributed evenly; they are decreased from proximal to distal colon.

Changing the distribution of intestinal flora and thus distribution of metabolites may have a great effect in treatment of diseases because there is a concentration threshold for acetate’s different impacts on the host. Butyrate has a particularly important role as the preferred energy source for the colonic epithelium, and a proposed role in providing protection against colon cancer and colitis.

There is a connection between acetate and butyrate distinctly, which suggests significance of this metabolite transformation for microbiota survival. The significance may even play an important role in disease development.

  • SCFAs can modulate progression of inflammatory diseases by inhibiting HDAC activity.
  • They decrease cytokines such as IL-6 and TNF-α.
  • Their inhibition of HDAC may work through modulating NF-κB activity via controlling DNA transcription.”

https://www.hindawi.com/journals/cjidmm/2021/6658674/ “Gut Microbiota-Derived Metabolites in the Development of Diseases”


A second paper provided more details about SCFAs:

“SCFAs not only have an essential role in intestinal health, but also enter systemic circulation as signaling molecules affecting host metabolism. We summarize effects of SCFAs on glucose and energy homeostasis, and mechanisms through which SCFAs regulate function of metabolically active organs.

Butyrate is the primary energy source for colonocytes, and propionate is a gluconeogenic substrate. After being absorbed by colonocytes, SCFAs are used as substrates in mitochondrial β-oxidation and the citric acid cycle to generate energy. SCFAs that are not metabolized in colonocytes are transported to the liver.

  • Uptake of propionate and butyrate in the liver is significant, whereas acetate uptake in the liver is negligible.
  • Only 40%, 10%, and 5% of microbial acetate, propionate, and butyrate, respectively, reach systemic circulation.
  • In the brain, acetate is used as an important energy source for astrocytes.

Butyrate-mediated inhibition of HDAC increases Nrf2 expression, which has been shown to lead to an increase of its downstream targets to protect against oxidative stress and inflammation. Deacetylase inhibition induced by butyrate also enhances mitochondrial activity.

SCFAs affect the gut-brain axis by regulating secretion of metabolic hormones, induction of intestinal gluconeogenesis (IGN), stimulation of vagal afferent neurons, and regulation of the central nervous system. The hunger-curbing effect of the portal glucose signal induced by IGN involves activation of afferents from the spinal cord and specific neurons in the parabrachial nucleus, rather than afferents from vagal nerves.

Clinical studies have indicated a causal role for SCFAs in metabolic health. A novel targeting method for colonic delivery of SCFAs should be developed to achieve more consistent and reliable dosing.

The gut-host signal axis may be more resistant to such intervention by microbial SCFAs, so this method should be tested for ≥3 months. In addition, due to inter-individual variability in microbiota and metabolism, factors that may directly affect host substrate and energy metabolism, such as diet and physical activity, should be standardized or at least assessed.”

https://www.hindawi.com/journals/cjidmm/2021/6632266/ “Modulation of Short-Chain Fatty Acids as Potential Therapy Method for Type 2 Diabetes Mellitus”


Gut microbiota and aging

This 2020 review explored the title subject:

“The human body contains 1013 human cells and 1014 commensal microbiota. Gut microbiota play vital roles in human development, physiology, immunity, and nutrition.

Human lifespan was thought to be determined by the combined influence of genetic, epigenetic, and environmental factors including lifestyle-associated factors such as exercise or diet. The role of symbiotic microorganisms has been ignored.

Age-associated alterations in composition, diversity, and functional features of gut microbiota are closely correlated with an age-related decline in immune system functioning (immunosenescence) and low-grade chronic inflammation (inflammaging). Immunosenescence and inflammaging do not have a unidirectional relationship. They exist in a mutually maintained state where immunosenescence is induced by inflammaging and vice versa.

Immunosenescence changes result in both quantitative and qualitative modifications of specific cellular subpopulations such as T cells, macrophages and natural killer cells as opposed to a global deterioration of the immune system. Neutrophils and macrophages from aged hosts are less active with diminished phagocytosing capability.

Gut microbiota transform environmental signals and dietary molecules into signaling metabolites to communicate with different organs and tissues in the host, mediating inflammation. Gut microbiota modulations via dietary or probiotics are useful anti-inflammaging and immunosenescence interventions.

The presence of microbiomic clocks in the human body makes noninvasive, accurate lifespan prediction possible. Prior to occurrence of aging-related diseases [shown above], bidirectional interactions between the gut and extraenteric tissue will change.

Correction of accelerated aging-associated gut dysbiosis is beneficial, suggesting a link between aging and gut microbiota that provides a rationale for microbiota-targeted interventions against age-related diseases. However, it is still unclear whether gut microbiota alterations are the cause or consequence of aging, and when and how to modulate gut microbiota to have anti-aging effects remain to be determined.”

https://www.tandfonline.com/doi/abs/10.1080/10408398.2020.1867054 “Gut microbiota and aging” (not freely available; thanks to Dr. Zongxin Ling for providing a copy)


1. The “Stable phase” predecessor to this review’s subject deserved its own paper:

“After initial exposure and critical transitional windows within 3 years after birth, it is generally agreed that human gut microbiota develops into the typical adult structure and composition that is relatively stable in adults.

gut microbiota by age phenotype

However, the Human Microbiome Project revealed that various factors such as food modernization, vaccines, antibiotics, and taking extreme hygiene measures will reduce human exposure to microbial symbionts and led to shrinkage of the core microbiome, while the reduction in microbiome biodiversity can compromise the human immune system and predispose individuals to several modern diseases.”

2. I looked for the ten germ-free references in the “How germ-free animals help elucidate the mechanisms” section of The gut microbiome: its role in brain health in this review, but didn’t find them cited. Likewise, the five germ-free references in this review weren’t cited in that paper. Good to see a variety of relevant research.

There were a few overlapping research groups with this review’s “Gut-brain axis aging” section, although it covered only AD and PD research.

3. Inflammaging is well-documented, but is chronic inflammation a condition of chronological age?

A twenty-something today who ate highly-processed food all their life could have gut microbiota roughly equivalent to their great-great grandparents’ at advanced ages. Except their ancestors’ conditions may have been byproducts of “an unintended consequence of both developmental programmes and maintenance programmes.

Would gut microbiota be a measure of such a twenty-something’s biological age? Do we wait until they’re 60, and explain their conditions by demographics? What could they do to reset themself back to a chronological-age-appropriate phenotype?


The future of your brain is in your gut right now

A 2020 paper by the author of Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease:

“The gut and brain communicate bidirectionally via several pathways which include:

  1. Neural via the vagus nerve;
  2. Endocrine via the HPA axis;
  3. Neurotransmitters, some of which are synthesized by microbes;
  4. Immune via cytokines; and
  5. Metabolic via microbially generated short-chain fatty acids.

How does nature maintain the gut-microbiome-brain axis? Mechanisms to maintain homeostasis of intestinal epithelial cells and their underlying cells are a key consideration.

The symbiotic relationship that exists between microbiota and the human host is evident when considering nutrient requirements of each. The host provides food for microbes, which consume that food to produce metabolites necessary for health of the host.

Consider function of the human nervous system, not in isolation but in integration with the gastrointestinal ecosystem of the host, in expectation of a favorable impact on human health and behavior.”

https://www.sciencedirect.com/science/article/pii/B9780128205938000148 “Chapter 14 – The gut microbiome: its role in brain health” (not freely available)


Always more questions:

  1. What did you put into your gut today?
  2. What type of internal environment did it support?
  3. What “favorable impact on human health and behavior” do you expect from today’s intake?
  4. How will you feel?
  5. Will you let evidence guide feeding your gut environment?

See Harnessing endogenous defenses with broccoli sprouts for further elaboration. See Switch on your Nrf2 signaling pathway for an interview with these papers’ author.

How will you feel?

Consider this a partial repost of Moral Fiber:

“We are all self-reproducing bioreactors. We provide an environment for trillions of microbes, most of which cannot survive for long without the food, shelter and a place to breed that we provide.

They inhabit us so thoroughly that not a single tissue in our body is sterile. Our microbiome affects our development, character, mood and health, and we affect it via our diet, medications and mood states.

The microbiome:

  • Affects our thinking and our mood;
  • Influences how we develop;
  • Molds our personalities;
  • Our sociability;
  • Our responses to fear and pain;
  • Our proneness to brain disease; and
  • May be as or more important in these respects than our genetic makeup.

Dysbiosis has become prevalent due to removal of prebiotic fibers from today’s ultra-processed foods. I believe that dietary shift has created a generation of humans less able to sustain or receive love.

They suffer from reduced motivation and lower impulse control. They are more anxious, more depressed, more selfish, more polarized, and therefore more susceptible to the corrosive politics of identity.


Other recent blog posts by Dr. Paul Clayton and team include Skin in The Game and Kenosha Kids.

Image from Thomas Cole : The Consummation, The Course of the Empire (1836) Canvas Gallery Wrapped Giclee Wall Art Print (D4060)

Eat oats today!

This 2020 food chemistry review provided phenolic-compound reasons to eat oats:

“Phenolamides result from the conjugation of hydroxycinnamic acids with amines. These products contain a variety of metabolic, chemical, and functional capabilities due to the large number of possible combinations among the parent compounds.

Of the currently known phenolamides, the most common are avenanthramides (AVAs), which are unique in oats. AVAs possess anti-inflammatory, anti-itch, anti-atherosclerosis, antioxidant, anti-cancer, anti-obesity, anti-fungal, anti-microbial, and neuroprotective properties.

Twenty-nine C-type AVAs have been identified in oats, and twenty-six A-type AVAs.

  • C-type AVAs in commercially available oat products range from 36.49-61.77 mg/kg (fresh weight).
  • A-type AVAs represent approximately 22.5% of total AVA levels in regular oats and 24.7-33.0% in commercial sprouted oats.

Steeping raw groats increased AVA concentrations.”

These reviews were referenced:

“Since publication of these two reviews, a few new studies reported AVAs’ beneficial health effects, mainly related to their anti-inflammatory and anti-cancer activities. AVAs can:

  • Significantly decrease IL-6, IL-8, and MCP-1 in endothelial cells;
  • Inhibit IL-1β- and TNF-α-induced NF-κB activation; as well as
  • Expression of adhesion molecules; and
  • Adhesion of monocytes to endothelial cell monolayer.

In 2020, the first evaluation of anti-inflammation effects of A-type AVAs was published from our own group. Fifteen A-type AVAs from commercial sprouted oat products interacted with lipopolysaccharide-induced nitric oxide production and iNOS expression.

Colloidal oatmeal’s natural components, AVAs, help to restore and maintain skin barrier function. AVAs are safe, well tolerated, and can be effective as adjuvant treatment in atopic dermatitis.

In one mouse model, a C-type AVA was able to mitigate many adverse effects of Alzheimer’s Disease. It restored hippocampal long-term potentiation and synaptic function, enhanced memory function, suppressed pro-inflammatory cytokines TNF-α and IL-6 levels, reduced caspase-3 levels, and increased pS9GSK-3β and IL-10 levels.

AVAs downregulated expression of hTERT and MDR1, pro-survival genes for cancer cells, and COX-2 mRNA and PGE2 levels, known pro-inflammatory markers. AVAs induced apoptosis by activating caspases 8, 3, and 2.”

https://pubs.acs.org/doi/10.1021/acs.jafc.0c02605 “The Chemistry and Health Benefits of Dietary Phenolamides” (not freely available)


Hadn’t thought about sprouting oats before this paper.

Clearing out the 2020 queue of interesting papers

I’ve partially read these 39 studies and reviews, but haven’t taken time to curate them.

Early Life

  1. Intergenerational Transmission of Cortical Sulcal Patterns from Mothers to their Children (not freely available)
  2. Differences in DNA Methylation Reprogramming Underlie the Sexual Dimorphism of Behavioral Disorder Caused by Prenatal Stress in Rats
  3. Maternal Diabetes Induces Immune Dysfunction in Autistic Offspring Through Oxidative Stress in Hematopoietic Stem Cells
  4. Maternal prenatal depression and epigenetic age deceleration: testing potentially confounding effects of prenatal stress and SSRI use
  5. Maternal trauma and fear history predict BDNF methylation and gene expression in newborns
  6. Adverse childhood experiences, posttraumatic stress, and FKBP5 methylation patterns in postpartum women and their newborn infants (not freely available)
  7. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double‐blind, controlled feeding study
  8. Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice
  9. Epigenetic mechanisms activated by childhood adversity (not freely available)

Epigenetic clocks

  1. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality (not freely available)
  2. Epigenetic age is a cell‐intrinsic property in transplanted human hematopoietic cells
  3. An epigenetic clock for human skeletal muscle
  4. Immune epigenetic age in pregnancy and 1 year after birth: Associations with weight change (not freely available)
  5. Vasomotor Symptoms and Accelerated Epigenetic Aging in the Women’s Health Initiative (WHI) (not freely available)
  6. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data

Epigenetics

  1. The Intersection of Epigenetics and Metabolism in Trained Immunity (not freely available)
  2. Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade
  3. Transcriptional Regulation of Inflammasomes
  4. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways
  5. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands
  6. Repeated stress exposure in mid-adolescence attenuates behavioral, noradrenergic, and epigenetic effects of trauma-like stress in early adult male rats
  7. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements
  8. Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation
  9. Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights
  10. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein
  11. Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice
  12. FKBP5-associated miRNA signature as a putative biomarker for PTSD in recently traumatized individuals
  13. Metabolic and epigenetic regulation of T-cell exhaustion (not freely available)

Aging

  1. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches
  2. Epigenetic regulation of bone remodeling by natural compounds
  3. Microglial Corpse Clearance: Lessons From Macrophages
  4. Plasma proteomic biomarker signature of age predicts health and life span
  5. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk

Broccoli sprouts

  1. Dietary Indole-3-Carbinol Alleviated Spleen Enlargement, Enhanced IgG Response in C3H/HeN Mice Infected with Citrobacter rodentium
  2. Effects of caffeic acid on epigenetics in the brain of rats with chronic unpredictable mild stress
  3. Effects of sulforaphane in the central nervous system
  4. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era (not freely available)
  5. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls (not freely available)
  6. Sulforaphane Reverses the Amyloid-β Oligomers Induced Depressive-Like Behavior (not freely available)

Dietary contexts matter

Two papers illustrated how actions of food compounds are affected by their contexts. The first was a 2020 UCLA rodent study:

“Long-chain polyunsaturated fatty acids (PUFAs), particularly omega-3 (n-3) PUFAs, have been indicated to play important roles in various aspects of human health. Controversies are observed in epidemiological and experimental studies regarding the benefits or lack of benefits of n-3 PUFAs.

Dietary docosahexaenoic acid (DHA; 22:6 n-3) supplementation improved select metabolic traits and brain function, and induced transcriptomic and epigenetic alterations in hypothalamic and hippocampal tissues in both context-independent and context-specific manners:

  • In terms of serum triglyceride, glycemic phenotypes, insulin resistance index, and memory retention, DHA did not affect these phenotypes significantly when examined on the chow diet background, but significantly improved these phenotypes in fructose-treated animals.
  • Genes and pathways related with tissue structure were affected by DHA regardless of the dietary context, although the direction of changes are not necessarily the same between contexts. These pathways may represent the core functions of DHA in maintaining cell membrane function and cell signaling.
  • DHA affected the mTOR signaling pathway in hippocampus. In the hypothalamus, altered pathways were more related to innate immunity, such as cytokine-cytokine receptors, NF-κB signaling pathway, and Toll-like receptor signaling pathway.

DHA exhibits differential influence on epigenetic loci, genes, pathways, and metabolic and cognitive phenotypes under different dietary contexts.”

https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202000788 “Multi‐tissue Multi‐omics Nutrigenomics Indicates Context‐specific Effects of DHA on Rat Brain” (not freely available)


A human equivalent age period of the subjects was 12 to 20 years old. If these researchers want to make their study outstanding, they’ll contact their UCLA colleague Dr. Steven Horvath, and apply his new human-rat relative biological age epigenetic clock per A rejuvenation therapy and sulforaphane.

The second paper was a 2016 review Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability (not freely available):

“The biological activities of food phytochemicals depend upon their bioaccessibility and bioavailability which can be affected by the presence of other food components including other bioactive constituents. For instance, α-tocopherol mixed with a flavonol (kaempferol or myricetin) is more effective in inhibiting lipid oxidation induced by free radicals than each component alone.

Interactions of phytochemicals may enhance or reduce the bioavailability of a given compound, depending on the facilitation/competition for cellular uptake and transportation. For example, β-carotene increases the bioavailability of lycopene in human plasma, and quercetin-3-glucoside reduces the absorption of anthocyanins.

Combinations of food extracts containing hydrophilic antioxidants and lipophilic antioxidants showed very high synergistic effects on free radical scavenging activities. A number of phytochemical mixtures and food combinations provide synergistic effects on inhibiting inflammation.

More research should be conducted to understand mechanisms of bioavailability interference considering physiological concentrations, food matrices, and food processing.”


Each of us can set appropriate contexts for our food consumption. Broccoli sprout synergies covered how I take supplements and broccoli sprouts together an hour or two before meals to keep meal contents from lowering sulforaphane bioavailability.

Combinations of my 19 supplements and broccoli sprouts are too many (616,645) for complete analyses. Just pairwise comparisons like the second paper’s example below would be 190 combinations.

binary isobologram

Contexts for each combination’s synergistic, antagonistic, or additive activities may also be influenced by other combinations’ results.

My consumption of flax oil (alpha linolenic acid C18:3) probably has effects similar to DHA since it’s an omega-3 PUFA and I take it with food. The first study’s human equivalent DHA dose was 100mg/kg, with its citation for clinical trials stating “1–9 g/day (0.45–4% of calories) n-3 PUFA.”

A 2020 review Functional Ingredients From Brassicaceae Species: Overview and Perspectives had perspectives such as:

“In many circumstances, the isolated bioactive is not as bioavailable or metabolically active as in the natural food matrix.”

It discussed categories but not combinations of phenolics, carotenoids, phytoalexins, terpenes, phytosteroids, and tocopherols, along with more well-known broccoli compounds.


Diving for breakfast

Natural sources of melatonin

This 2020 review subject was melatonin:

“The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area. Melatonin is a hormone, an indolamine that predominantly appears in plants, microorganisms, and mammals.

The precursor of this molecule is solely the amino acid L‐tryptophan. Melatonin ensures a circadian and seasonal signal to vertebrate organisms; it is synthesized through a cascade of enzymatic reactions producing melatonin from serotonin in its final phases. The synthesis of melatonin is observed in almost all organs.

One melatonin molecule has the capacity to scavenge up to 10 ROS versus the other antioxidants that scavenge 1 or even less ROS. Melatonin antioxidant properties are accomplished with the indole ring that stimulates enzyme production (i.e., superoxide dismutase (SOD), glutathione‐peroxidase (Gpx), and catalase (CAT)), which mitigate free radicals to less toxic substances.

In addition to antioxidant properties, it plays a fundamental role in the modulation of various physiological functions, including circadian rhythmicity, bone integrity, and functionalization of the human reproductive system.

The presence of melatonin and its isomers is not exclusive for grapes and grape‐derived products. Other fruits such as sweet and sour cherries and fermented juices of orange and pomegranate may be also of interest.”

https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12639 “Naturally occurring melatonin: Sources and possible ways of its biosynthesis”


Treating psychopathological symptoms will somehow resolve causes?

This 2020 Swiss review subject was potential glutathione therapies for stress:

“We examine available data supporting a role for GSH levels and antioxidant function in the brain in relation to anxiety and stress-related psychopathologies. Several promising compounds could raise GSH levels in the brain by either increasing availability of its precursors or expression of GSH-regulating enzymes through activation of Nrf2.

GSH is the main cellular antioxidant found in all mammalian tissues. In the brain, GSH homeostasis has an additional level of complexity in that expression of GSH and GSH-related enzymes are not evenly distributed across all cell types, requiring coordination between neurons and astrocytes to neutralize oxidative insults.

Increased energy demand in situations of chronic stress leads to mitochondrial ROS overproduction, oxidative damage and exhaustion of GSH pools in the brain.

Several compounds can function as precursors of GSH by acting as cysteine (Cys) donors such as taurine or glutamate (Glu) donors such as glutamine (Gln). Other compounds stimulate synthesis and recycling of GSH through activation of the Nrf2 pathway including sulforaphane and melatonin. Compounds such as acetyl-L-carnitine can increase GSH levels.”

https://www.sciencedirect.com/science/article/abs/pii/S0149763419311133 “Therapeutic potential of glutathione-enhancers in stress-related psychopathologies” (not freely available)


Many animal studies of “stress-related psychopathologies” were cited without noting applicability to humans. These reviewers instead had curious none-of-this-means-anything disclaimers like:

“Comparisons between studies investigating brain disorders of such different nature such as psychiatric disorders or neurodegenerative diseases, or even between brain or non-brain related disorders should be made with caution.”

Regardless, this paper had informative sections for my 27th week of eating broccoli sprouts every day.

1. I forgot to mention in Broccoli sprout synergies that I’ve taken 500 mg of trimethyl glycine (aka betaine) twice a day for over 15 years. Section 3.1.2 highlighted amino acid glycine:

“Endogenous synthesis is insufficient to meet metabolic demands for most mammals (including humans) and additional glycine must be obtained from diet. While most research has focused on increasing cysteine levels in the brain in order to drive GSH synthesis, glycine supplementation alone or in combination with cysteine-enhancing compounds are gaining attention for their ability to enhance GSH.”

2. Amino acid taurine dropped off my supplement regimen last year after taking 500 mg twice a day for years. It’s back on now after reading Section 3.1.3:

“Most studies that reported enhanced GSH in the brain following taurine treatment were performed under a chronic regimen and used in age-related disease models.

Such positive effects of taurine on GSH levels may be explained by the fact that cysteine is the essential precursor to both metabolites, whereby taurine supplementation may drive metabolism of cysteine towards GSH synthesis.”

3. A study in Upgrade your brain’s switchboard with broccoli sprouts was cited for its potential:

“Thalamic GSH values significantly correlated with blood GSH levels, suggesting that peripheral GSH levels may be a marker of brain GSH content. Studies point to the capacity of sulforaphane to function both as a prophylactic against stress-induced behavioral changes and as a positive modulator in healthy animals.”


Sunrise minus 5 minutes

Unraveling oxytocin – is it nature’s medicine?

This 2020 review attempted to consolidate thousands of research papers on oxytocin:

“Chemical properties of oxytocin make this molecule difficult to work with and to measure. Effects of oxytocin are context-dependent, sexually dimorphic, and altered by experience. Its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.

Widely used medical interventions i.e.:

  • Exogenous oxytocin, such as Pitocin given to facilitate labor;
  • Opioid medications that block the oxytocin system; or
  • Cesarean sections that alter exposure to endogenous oxytocin

have lasting consequences for the offspring and/or mother.

Such exposures hold the potential to have epigenetic effects on the oxytocin systems, including changes in DNA methylation. These changes in turn would have lasting effects on the expression of receptors for oxytocin, leaving individuals differentially able to respond to oxytocin and also possibly to the effects of vasopressin.

Regions with especially high levels of OXTR [oxytocin receptor gene] are:

  • Various parts of the amygdala;
  • Bed nucleus of the stria terminalis;
  • Nucleus accumbens;
  • Brainstem source nuclei for the autonomic nervous system;
  • Systems that regulate the HPA axis; as well as
  • Brainstem tissues involved in pain and social attention.

Oxytocin protects neural cells against hypoxic-ischemic conditions by:

  • Preserving mitochondrial function;
  • Reducing oxidative stress; and
  • Decreasing a chromatin protein that is released during inflammation

which can activate microglia through the receptor for advanced glycation end products (RAGE). RAGE acts as an oxytocin-binding protein facilitating the transport of oxytocin across the blood-brain barrier and through other tissues.

Directionality of this transport is 5–10 times higher from the blood to the brain, in comparison with brain to blood transport. Individual differences in RAGE could help to predict cellular access to oxytocin and might also facilitate access to oxytocin under conditions of stress or illness.

Oxytocin and vasopressin and their receptors are genetically variable, epigenetically regulated, and sensitive to stressors and diet across the lifespan. As one example, salt releases vasopressin and also oxytocin.

Nicotine is a potent regulator of vasopressin. Smoking, including prenatal exposure of a fetus, holds the potential to adjust this system with effects that likely differ between males and females and that may be transgenerational.

Relative concentrations of endogenous oxytocin and vasopressin in plasma were associated with:

These studies support the usefulness of measurements of both oxytocin and vasopressin but leave many empirical questions unresolved.

The vast majority of oxytocin in biosamples evades detection using conventional approaches to measurement.”

https://pharmrev.aspetjournals.org/content/pharmrev/72/4/829.full.pdf “Is Oxytocin Nature’s Medicine?”


I appreciated efforts to extract worthwhile oxytocin research from countless poorly performed studies, research that wasted resources, and research that actually detracted from science.

I was disappointed that at least one of the reviewers didn’t take this review as an opportunity to confess their previous wastes like three flimsy studies discussed in Using oxytocin receptor gene methylation to pursue an agenda.

Frank interpretations of one’s own study findings to acknowledge limitations is one way researchers can address items upfront that will be questioned anyway. Such analyses also indicate a goal to advance science.

Although these reviewers didn’t provide concrete answers to many questions, they highlighted promising research areas, such as:

  • Improved approaches to oxytocin measurements;
  • Prenatal epigenetic experience associations with oxytocin and OXTR; and
  • Possible transgenerational transmission of these prenatal epigenetic experiences.

Part 3 of Do broccoli sprouts treat migraines?

This 2019 Swedish review subject was the role of inflammation in migraines:

“In this article, we argue that inflammation could have an important role in migraine chronification through a mechanism termed neurogenic neuroinflammation, a phenomenon whereby activation of trigeminal sensory pathways leads to an orchestrated inflammatory response involving immune cells, vascular cells and neurons.

No studies to date have directly linked hypothalamic neuroinflammation with migraine, and we therefore looked to other studies. Overactivity of the NF-κB–IKKβ signalling pathway has been shown to be a critical modulator of hypothalamic inflammation.

We do not believe that CNS inflammation is involved in the triggering of migraine attacks, as BBB alterations, glial cell activation and leukocyte infiltration have not been observed in individuals with this condition. Peripheral sensitization is an important factor in migraine chronification, as opposed to migraine triggering.”

https://www.nature.com/articles/s41582-019-0216-y “Does inflammation have a role in migraine?” (not freely available)

See Reevaluate findings in another paradigm for other views of hypothalamic inflammation.


I came across this review through its citation in the 2020 medical paper The fifth cranial nerve in headaches with the same lead author:

“Reduced serotonergic transmission seems to be involved in medication overuse headache development, possibly through a facilitation of the sensitization process via a maladaptive plasticity. In humans, common neurophysiological investigation of central sensitization shows an abnormal cortical response to repetitive sensory stimuli, with an increased response amplitude after low numbers of stimuli and a lacking habituation, suggesting an altered plasticity.

Neurons, under repetitive, persistent nociceptive stimuli, become sensitized and produce exaggerated and prolonged responses to lower threshold stimuli. Over time, a neuroplastic adaptation in medullary and cortical pain areas causes a shift in the pain modulatory system creating a new threshold and favouring a net pain facilitation rather than pain alleviation.

Targets are almost exclusively found in the nerves of trigeminal ganglion; the hub of the fifth cranial nerve. Although we believe that the headache-trigger most likely have the origin in the CNS, this review underscores the importance of trigeminal neurons in the perception of pain.”

This second paper listed various treatments of symptoms. It was remarkable for no focus on treatments of causes.


Per Parts 1 and 2, I rarely get headaches anymore, much less migraines. 23 weeks of eating a clinically relevant amount of broccoli sprouts every day resolved causes for me. I didn’t appreciate how migraines and many other things changed until awakening during Week 9.

Forget about the above papers’ recursively-created hierarchy that permitted systematic self-justifications. Science is neither “We do not believe” nor “we believe that..”

Instead, address migraines by getting rid of inflammation in its many forms, to include:

  • Taking walks, exercising, or physically working every day;
  • Eating foods our great-great grandparents ate;
  • Practicing oral hygiene.

And support those closest to you:

Part 2 of Do broccoli sprouts treat migraines?

To follow up Do broccoli sprouts treat migraines? which used a PubMed “sulforaphane migraine” search, a PubMed “diindolylmethane” search came across a 2020 Czech human cell study Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor that Induces CYP1A1 in Hepatic and Intestinal Cells that had this informative Introduction:

“The aryl hydrocarbon receptor (AhR) transcriptionally controls a wide array of genes. AhR is a critical player in human physiology (e.g., hematopoiesis) and also in many pathophysiological processes such as diabetes, carcinogenesis, inflammation, infection or cardiovascular diseases.

Suitable candidates for off-targeting AhR could be the antimigraine drugs of triptan class, which have an indole core in their structure. Indole-based compounds were demonstrated as ligands of AhR, including dietary indoles (e.g., indole-3-carbinol and diindolylmethane).”

Adding AhR to the search showed:

Changing the PubMed search to “icz migraine” pulled up a 2013 review Biomedical Importance of Indoles that described sumatriptan as an indole, and:

“Since DIM accumulates in the cell nucleus, it likely contributes to cell nuclear events that have been ascribed to I3C.”

Widening the search to “i3c ahr” added:

Changing the search to “i3c migraine” picked up a 2011 UK human study Effect of diindolylmethane supplementation on low-grade cervical cytological abnormalities: double-blind, randomised, controlled trial:

“In the study reported here, there was no statistically significant difference in serious adverse events between groups; in fact a higher proportion of women in the placebo group reported a serious adverse event. Although this study did not have sufficient power to study migraines, we did find a non-significant increase in reported headaches (18% on DIM, 12% on placebo, P=0.12).”

Returning to the original PubMed “sulforaphane migraine” search, Bioavailability of Sulforaphane Following Ingestion of Glucoraphanin-Rich Broccoli Sprout and Seed Extracts with Active Myrosinase: A Pilot Study of the Effects of Proton Pump Inhibitor Administration included one subject who took migraine medication. They weren’t a study outlier, however.


Although indole chemistry indicates a broccoli sprouts – migraine connection, I haven’t found relevant research. Maybe the known properties and actions of broccoli sprout compounds provide enough to affect causes of migraines?

See Part 3 to follow up.