Selecting broccoli varieties

This 2022 study evaluated 14 broccoli varieties grown in the same conditions for their floret compounds:

“Glucosinolate (GSL) profile and content in 11 inbred broccoli lines and three commercial cultivars were analyzed. Hydrolysate content, myrosinase activity, and nitrile formation rate were also determined.

Sulforaphane – an isothiocyanate (ITC) hydrolysate of glucoraphanin – content showed relatively higher value in the following order: 5404 > 5410 > 5407 > 5411, although glucoraphanin content was lower in those lines:


No significant relationship was found between myrosinase activity and total hydrolysate content, except in line 5310, which had the lowest myrosinase activity and the lowest total hydrolysate content. There was no significant correlation between myrosinase activities and sulforaphane.

We found a clear difference in selecting functional broccoli by considering only the GSL content or hydrolysates.

  • Even if total GSL content and individual GSL content were high, ITC content could not be produced at a high level.
  • When GSL content is high, if nitrile formation rate was also high, more nitrile than ITC would be produced.

Low nitrile formation rate and higher hydrolysate content should be considered when selecting functional broccoli lines with high GSL content.” “Selection of broccoli (Brassica oleracea var. italica) on composition and content of glucosinolates and hydrolysates”

As 3-day-old broccoli sprouts have the optimal yields, Lab analyses of broccoli sprout compounds, Tailoring measurements for broccoli sprouts, and this study found, there weren’t many potential health benefits based solely on broccoli varieties’ glucoraphanin contents. But genotypes had a greater effect than did environmental influences, and seed / sprout / stalk / floret beneficial contents differed.

There are opportunities for vendors to showcase healthier broccoli products. Growing, harvesting, and storage conditions will make that expensive to test and certify, though.

As A follow-on study to 3-day-old broccoli sprouts have the optimal yields, Enhancing sulforaphane content, and Microwave broccoli to increase sulforaphane levels showed, there are ways to improve myrosinase activity and isothiocyanate yield. I do these easy actions every day while growing 3-day-old sprouts from unknown broccoli varieties. Waiting for evidence to compel changing that.

Strange birds


Sulforaphane vs. too much oxygen

This 2021 rodent study investigated perinatal effects of hyperoxia and sulforaphane:

“We demonstrated that early-life oxidant-induced acute lung injury had significant consequences later in life on NRF2-dependent respiratory syncytial virus (RSV) susceptibility in mice. We also determined that increased antioxidant conditions in utero potentially contribute to a decreased risk of postnatal airway disease as we found that prenatal antioxidant sulforaphane (SFN) protected developing lungs from bronchopulmonary dysplasia (BPD)-like oxidative pathogenesis in mice.

Unexpectedly, our results indicated that prenatal SFN-mediated postnatal protection against BPD-like phenotypes are not NRF2-dependent. Prenatal SFN markedly improved hyperoxia-caused severe BPD-like lung injury parameters in Nrf2−/− pups while we observed relatively marginal protection by in utero SFN in hyperoxia-resistant Nrf2+/+ pups.

SFN is a strong NRF2 and ARE gene inducer for cytoprotection by NRF2 stabilization. However, SFN also acts through other mechanisms, including NF-κB inhibition, MAPK activation, and histone deacetylase inhibition for anti-inflammation, chemoprevention, apoptosis, and autophagy.

Our study provided new insights into infant oxidant lung injury severity influence on persistence of pulmonary morbidity and therapeutic intervention for NRF2 agonists. Our results also provided justification for further studies on feto–placental barrier crossing of SFN metabolites and SFN-triggered molecular and epigenetic aspects of maternal cues for barrier and fetal lung signaling.” “Murine Neonatal Oxidant Lung Injury: NRF2-Dependent Predisposition to Adulthood Respiratory Viral Infection and Protection by Maternal Antioxidant”

This study’s oral human-equivalent dose for treatment dams was 9 mg sulforaphane (1.67 mg x .081 x 70 kg) every other day during the last half of pregnancy. A small dose per How much sulforaphane is suitable for healthy people?

“The daily SFN dose found to achieve beneficial outcomes in most of the available clinical trials is around 20-40 mg.”


Eat broccoli sprouts to prevent radiation damage

This 2021 rodent study investigated effects of sulforaphane on skin damage from irradiation:

“Radiotherapy is currently the main treatment for various cancers. We observed the protective effect of sulforaphane (SFN) on radiation-induced skin injury (RISI), including oxidative stress and inflammatory response indexes, and Nrf2 expression with its downstream antioxidant genes:

  • SFN prevented DNA damage caused by radiation.
  • SFN prevented and treated radiation-induced skin inflammation.
  • SFN prevented radiation-induced oxidative stress in skin.
  • Activation of Nrf2 and expressions of its downstream genes in skin induced by SFN.

Nrf2 downstream antioxidant genes induced by SFN

Mice were randomly assigned to one of four groups (n = 8), including control group (CON), SFN group, irradiation (IR) group, and IR plus SFN (IR/SFN) group (* p < 0.05 vs. CON; & p < 0.05 vs. IR).

Our most innovative discovery was that SFN provided skin protection from IR. At present, there are a few drugs to treat RISI in clinical patients, but the effect is not very ideal, or some may cause certain side effects.

SFN extracted from natural broccoli has no toxicity and is easily accepted for usage in clinic. According to our findings, SFN will provide a new strategy for clinical treatment and prevention of RISI in the future.” “Sulforaphane-Mediated Nrf2 Activation Prevents Radiation-Induced Skin Injury through Inhibiting the Oxidative-Stress-Activated DNA Damage and NLRP3 Inflammasome”

This study’s findings probably also apply to less-severe skin damage caused by sun exposure.


Epigenetic clocks so far in 2021

2021’s busiest researcher took time out this month to update progress on epigenetic clocks:

Hallmarks of aging aren’t all associated with epigenetic aging.

epigenetic aging vs. hallmarks of aging

Interventions that increase cellular lifespan aren’t all associated with epigenetic aging.

epigenetic aging vs. cellular lifespan

Many of his authored or coauthored 2021 papers developed human / mammalian species relative-age epigenetic clocks.

epigenetic clock mammalian maximum lifespan

Relative-age epigenetic clocks better predict human results from animal testing.

pan-mammalian epigenetic clock

Previously curated papers that were mentioned or relevant included:

Stay out of the hospital with Vitamin K

This 2021 study investigated Vitamins K1 and K2 associations with hospitalization for atherosclerotic cardiovascular disease (ASCVD):

“In this prospective cohort study, both dietary vitamin K1 intake and vitamin K2 intake were inversely related to ASCVD hospitalization risk, and very low vitamin K1 was associated with a higher risk of ASCVD hospitalizations. Given very different food sources, these data support an independent protective effect for both subtypes of vitamin K.


Relatively higher vitamin K2 intake in our cohort permitted discovery of a nonlinear, more U‐shaped association between vitamin K2 intake and ASCVD risk, which, to the best of our knowledge, has not previously been described. This may reflect a competing increase in ASCVD risk associated with overconsumption of vitamin K2‐rich foods (ie, cheese, eggs, butter).

Our study comes with some limitations common to nutritional epidemiology, and has significant strengths:

  • A large sample size with up to 23 years of follow‐up, allowing for accumulation of a high number of events;
  • Availability of important participant characteristics, enabling appropriate methods to be employed to reduce residual confounding; and
  • Minimal loss to follow‐up (<0.3%).” “Vitamin K Intake and Atherosclerotic Cardiovascular Disease in the Danish Diet Cancer and Health Study”

Daily broccoli / red cabbage / mustard sprouts for Vitamin K1, and a supplement for Vitamin K2 is what I do. Expect more than staying out of hospitals, but don’t know whether previous damage can be repaired.

Looking forward


Gut microbiota strains

Three human studies investigated strains within microbiota species. The first from 2021 had obese child subjects:

“Dietary intervention is effective in human health promotion through modulation of gut microbiota. Diet can cause single-nucleotide polymorphisms (SNPs) to occur in gut microbiota, and some of these variations may lead to functional changes in human health.

Compared with normal diet, the WTP diet provided large quantities of whole-grain mix that was rich in starch, soluble and insoluble dietary fiber, protein, and amino acids, but contained a small amount of fat. When this excess and/or indigestible nutrition reached the colon, it brought environmental pressures to microbiota that stayed there.

This pressure could facilitate utilization of indigestible nutrition by causing microbial SNPs. Metabolic efficiencies of indigestible nutrition substrates would be enhanced to adapt to the shifted environment better.

Although abundance of Bifidobacterium increased significantly by the intervention and became dominant strains responsible for nutrition metabolism, they had less BiasSNPs between the pre- and post-intervention group in comparison with Faecalibacterium. Finding F. prausnitzii as important functional strains influenced by intervention highlights the superiority of applying SNP analysis in studies of gut microbiota.

Though F. prausnitzii were well known for their biodiversity, we could not find functional reports about these SNPs. Future efforts are needed to verify/discern specific effects of these SNPs on encoded protein activity, their role on metabolism under high-fiber dietary intervention, and their potential beneficial or detrimental influences on host health.” “Gut Microbial SNPs Induced by High-Fiber Diet Dominate Nutrition Metabolism and Environmental Adaption of Faecalibacterium prausnitzii in Obese Children”

A second 2021 human study investigated strain diversity in liver cirrhosis and Crohn’s disease:

“We constructed a computational framework to study strain heterogeneity in the gut microbiome of patients with liver cirrhosis (LC). Only Faecalibacterium prausnitzii showed different single-nucleotide polymorphism patterns between LC and healthy control (HC) groups.

Strain diversity analysis discovered that although most F. prausnitzii genomes are more deficient in LC group than in HC group at the strain level, a subgroup of 19 F. prausnitzii strains showed no sensitivity to LC, which is inconsistent with the species-level result.

More experiments need to be conducted so as to confirm the hypothesis of physiological differences among subgroups of F. prausnitzii strains. Our results suggest that strain heterogeneity should receive more attention.

With rapid development of sequencing technologies and experimental approaches, an increasing number of metagenomic studies will involve strain-level analysis. Such analysis of human metagenomes can help researchers develop more reliable disease diagnoses and treatment methods from a microbiological perspective.” “Comprehensive Strain-Level Analysis of the Gut Microbe Faecalibacterium prausnitzii in Patients with Liver Cirrhosis”

A 2018 study investigated dietary fibers’ effects on Type 2 diabetics:

“In this study, we identified a group of acetate- and butyrate-producing bacterial strains that were selectively promoted by increased availability of diverse fermentable carbohydrates in the form of dietary fibers. These positive responders are likely key players for maintaining the mutualistic relationship between gut microbiota and the human host. Promoting this active group of SCFA producers not only enhanced a beneficial function but also maintained a gut environment that keeps detrimental bacteria at bay.

Only a small number of bacteria with genetic capacity for producing SCFAs were able to take advantage of this new resource and become dominant positive responders. The response, however, was strain specific: only one of the six strains of Faecalibacterium prausnitzii was promoted.

positive responders

The 15 positive responders are from three different phyla, but they act as a guild to augment deficient SCFA production from the gut ecosystem by responding to increased fermentable carbohydrate availability in similar ways. When they are considered as a functional group, the abundance and evenness of this guild of SCFA producers correlate with host clinical outcomes.” “Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes”

These studies favored a prebiotic approach to make gut microbiota happy and reciprocal in human health. The second study investigated 135 known strains of F. prausnitzii, and the first study found beneficial F. prausnitzii strains not yet covered in genomic databases.

I found the first two studies by them citing the third. The third study was cited in Gut microbiota guilds.


Resistant starch therapy

This 2021 review subject was interactions among resistant starches and gut microbiota:

“Starch that reaches the large intestine without being fully digested is termed resistant starch (RS). Starch digestibility should be considered as a kinetic property (slower to faster) affected by host-specific factors, rather than as a binary trait (resistant or nonresistant).

RS is degraded by the colon’s complex ecosystem of microbes, triggering a cascading web of metabolic interactions. RS acts as a resource that is degraded and fermented by a hierarchy of specialized gut microbes:

  1. Primary degraders grow on RS in monoculture. They penetrate outer surfaces of intact RS granules, exposing pores and deeper concentric matrices while liberating oligosaccharides and generating metabolites like lactate and acetate.
  2. Secondary degraders grow on starch in monoculture, but degrade intact RS poorly or not at all. Instead, they may adhere to abrasions and pores on RS before participating in its degradation, and opportunistically utilize solubilized oligosaccharides produced by other RS degraders.
  3. Cross-feeders do not grow on starch in monoculture. They utilize by-products generated by upstream degraders, helping to maintain stoichiometric equilibrium and thermodynamically favorable (i.e. unconstrained) fermentation.

Together, the subsystem of microbes involved in RS degradation and fermentation participates in a complex network of cross-feeding interactions. In maintaining microbiome homeostasis, the RS nutrient web expands the scope of what could be considered a ‘beneficial’ gut microbe to a cluster of metabolically interconnected microbes.

1. Primary degraders such as acetate-producing Ruminococcus bromii are thought to be necessary for RS degradation in the human gut, where they unlock RS for other community members to degrade and ferment.

Ruminococcus genus

2. Secondary degraders possess extracellular amylases to degrade regular starch, but their contribution to initiating RS degradation is negligible compared to that of primary degraders. Instead, they may require primary degraders to erode smooth RS granule surfaces before adhering to RS and/or scavenging for ‘substrate spillover’ (i.e. excess oligosaccharides generated by primary degraders).

Eubacterium genus

Roseburia genus

3. Cross-feeders utilize starch by-products or metabolites generated by upstream RS degraders, such as acetate, lactate, formate, and succinate. Describing all known gut bacteria capable of utilizing these substrates exceeds the scope of this review, but one other example is noteworthy.

Faecalibacterium prausnitzii is a prominent butyrate-producing commensal, comprising 1.5% to 9.5% of fecal bacteria in European individuals. F. prausnitzii utilizes maltose and acetate to generate butyrate.

top 1-10 species

Microbiome sequencing data are compositional, meaning that gene amplicon read counts do not necessarily reflect bacterial absolute abundances. Instead, read counts are typically normalized to sum to 100%.

For this reason, relative abundances of smaller keystone communities (e.g. primary degraders) may increase, but appear to decrease simply because cross-feeders increase in relative abundance to a greater extent. These limitations illustrate the necessity of sufficiently powering RS interventions where microbiome composition is the primary endpoint, collecting critical baseline data and employing appropriate statistical techniques.” “Resistant starch, microbiome, and precision modulation”

Take acetyl-L-carnitine for early-life trauma

This 2021 rodent study traumatized female mice during their last 20% of pregnancy, with effects that included:

  • Prenatally stressed pups raised by stressed mothers had normal cognitive function, but depressive-like behavior and social impairment;
  • Prenatally stressed pups raised by control mothers did not reverse behavioral deficits; and
  • Control pups raised by stressed mothers displayed prenatally stressed pups’ behavioral phenotypes.

Acetyl-L-carnitine (ALCAR) protected against and reversed depressive-like behavior induced by prenatal trauma:

alcar regime

ALCAR was supplemented in drinking water of s → S mice either from weaning to adulthood (3–8 weeks), or for one week in adulthood (7–8 weeks). ALCAR supplementation from weaning rendered s → S mice resistant to developing depressive-like behavior.

ALCAR supplementation for 1 week during adulthood rescued depressive-like behavior. One week after ALCAR cessation, however, the anti-depressant effect of ALCAR was diminished.

Intergenerational trauma induces social deficits and depressive-like behavior through divergent and convergent mechanisms of both in utero and early-life parenting environments:

  • We establish 2-HG [2-hydroxyglutaric acid, a hypoxia and mitochondrial dysfunction marker, and an epigenetic modifier] as an early predictive biomarker for trauma-induced behavioral deficits; and
  • Demonstrate that early pharmacological correction of mitochondria metabolism dysfunction by ALCAR can permanently reverse behavioral deficits.” “Intergenerational trauma transmission is associated with brain metabotranscriptome remodeling and mitochondrial dysfunction”

Previously curated studies cited were:

This study had an effusive endorsement of acetyl-L-carnitine in its Discussion section, ending with:

“This has the potential to change lives of millions of people who suffer from major depression or have risk of developing this disabling disorder, particularly those in which depression arose from prenatal traumatic stress.”

I take a gram daily. Don’t know about prenatal trauma, but I’m certain what happened during my early childhood.

I asked both these researchers and those of Reference 70 for their estimates of a human equivalent to “0.3% ALCAR in drinking water.” Will update with their replies.


Basal cognition

To follow up Electroceuticals, a 2021 article by Dr. Michael Levin:

“A key philosophical idea, borrowed from computer science, is substrate independence. Components of a living system can carry out appropriate, clearly specified cognitive functions.

Cognitive processes in embryogenesis and regeneration:


    • (a) An egg will reliably give rise to a species-specific anatomical outcome.
    • (b) This process is usually described as a feed-forward system where activity of gene-regulatory networks (GRNs) within cells results in expression of effector proteins that, via structural properties of proteins and physical forces, will result in the emergence of complex shape. This class of models (bottom-up process driven by self-organization and parallel activity of large numbers of local agents) is difficult to apply to several biological phenomena. Regulative development can alter subsequent steps to reach the correct anatomical goal state despite drastic deviations of the starting state.
    • (c) For example, mammalian embryos can be divided in half, giving rise to perfectly normal monozygotic twins, each of which has regenerated the missing cell mass.
    • (d) Mammalian embryos can also be combined, giving rise to a normal embryo in which no parts are duplicated.
    • (e) Such capabilities suggest that pattern control is fundamentally a homeostatic process—a closed-loop system using feedback to minimize error (distance) between a current shape and a target morphology. Although these kinds of decision-making models are commonplace in engineering, they are only recently beginning to be employed in biology. This kind of pattern-homeostatic process must store a setpoint that serves as a stop condition; however, as with most types of memory, it can be specifically modified by experience.
    • (f) In the phenomenon of trophic memory, damage created at a specific point on the branched structure of deer antlers is recalled as ectopic branch points in subsequent years’ antler regeneration. This reveals ability of cells at the scalp to remember spatial location of specific damage events and alter cell behaviour to adjust the resulting pattern appropriately—a pattern memory that stretches across months of time and considerable spatial distance and is able to modify low-level (cellular) growth rules to construct a pre-determined stored pattern that differs from genome-default for this species.
    • (g) A similar capability was recently shown in a molecularly tractable model system, in which genetically normal planarian flatworms were bioelectrically reprogrammed to regenerate two-headed animals when cut in subsequent rounds of asexual reproduction in plain water.
    • (h) The decision making revealed by cells, tissues and organs in these examples of dynamic remodelling toward specific target states could be implemented by cybernetic processes at various positions along a scale of proto-cognitive complexity.

A challenge for the field of basal cognition is to reveal gradualism of cellular properties underwriting this critical biological function to leverage an understanding of clear phase transitions observed in cognitive capacities. The origin and development of nervous systems is so far the most dramatic example.” “Uncovering cognitive similarities and differences, conservation and innovation”

Why aren’t more resources being directed toward these research efforts? Glad to see that at least one co-founder of Microsoft, Paul Allen, posthumously used his billions to sponsor science for human good.


To follow up A top-down view of biological goal-directed mechanisms, 2020 and 2021 presentations by Dr. Michael Levin of Tufts University:

“We want to able to design a living form at the level of anatomy, and have the system compile it down into a set of low level instructions that you would have to give to the cellular collective to make it do this. What we would like to do is to offload all that complexity onto cells, and control this  whole thing with inputs, experiences, or stimuli.

What evolution does is to exploit bioelectricity to implement networks that store these patterns, patterns that serve as memories and goal states.”


Appreciate Dr. Levin sticking with his findings for three decades now. Credit my son for refreshing my memory.

The amino acid ergothioneine

A trio of papers on ergothioneine starts with a 2019 human study. 3,236 people without cardiovascular disease and diabetes mellitus ages 57.4 ± 6.0 were measured for 112 metabolites, then followed-up after 20+ years:

“We identified that higher ergothioneine was an independent marker of lower risk of cardiometabolic disease and mortality, which potentially can be induced by a specific healthy dietary intake.

overall mortality and ergothioneine

Ergothioneine exists in many dietary sources and has especially high levels in mushrooms, tempeh, and garlic. Ergothioneine has previously been associated with a higher intake of vegetables, seafood and with a lower intake of solid fats and added sugar as well as associated with healthy food patterns.” “Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease”

I came across this study by its citation in a 2021 review:

“The body has evolved to rely on highly abundant low molecular weight thiols such as glutathione to maintain redox homeostasis but also play other important roles including xenobiotic detoxification and signalling. Some of these thiols may also be derived from diet, such as the trimethyl-betaine derivative of histidine, ergothioneine (ET).

image description

ET can be found in most (if not all) tissues, with differential rates of accumulation, owing to differing expression of the transporter. High expression of the transporter, and hence high levels of ET, is observed in certain cells (e.g. blood cells, bone marrow, ocular tissues, brain) that are likely predisposed to oxidative stress, although other tissues can accumulate high levels of ET with sustained administration. This has been suggested to be an adaptive physiological response to elevate ET in the damaged tissue and thereby limit further injury.” “Ergothioneine, recent developments”

The coauthors of this review were also coauthors of a 2018 review:

“Ergothioneine is avidly taken up from the diet by humans and other animals through a transporter, OCTN1. Ergothioneine is not rapidly metabolised, or excreted in urine, and has powerful antioxidant and cytoprotective properties.

ergothioneine in foods

Effects of dietary ET supplementation on oxidative damage in young healthy adults found a trend to a decrease in oxidative damage, as detected in plasma and urine using several established biomarkers of oxidative damage, but no major decreases. This could arguably be a useful property of ET: not interfering with important roles of ROS/RNS in healthy tissues, but coming into play when oxidative damage becomes excessive due to tissue injury, toxin exposure or disease, and ET is then accumulated.” “Ergothioneine – a diet-derived antioxidant with therapeutic potential”

I’m upping a half-pound of mushrooms every day to 3/4 lb. (340 g). Don’t think I could eat more garlic than the current six cloves.


I came across this subject in today’s video:

The next phase of reversing aging and immunosenescent trends

Dr. Greg Fahy earlier this week provided an update on the November 2020 TRIIM-X follow-on to the September 2019 TRIIM curated in Reversal of aging and immunosenescent trends. Emphasis was on reproducibility:

23:45 Dr. Steve Horvath reanalyzed TRIIM for the plasma portion of Levine’s PhenoAge epigenetic clock. Results were congruent with four other epigenetic clocks showing a 2.5 year reduction of biological age.

39:20 TRIIM-X preliminary results started with C-Reactive protein.

43:05 No backsliding in epigenetic age deceleration between TRIIM and TRIIM-X!

continued epigenetic age deceleration

55:07 Q & A session starts with how TRIIM-X controls for supplements. Answers for resveratrol and calorie restriction, emphasizing that CR doesn’t reverse aging.

1:10 TRIIM-X took photos of subjects’ hair at baseline!

Great update! The last 20 minutes emphasized a need for capital in aging research. TRIIM-X has another 1.5 years to go, and other aging research projects needing funding were mentioned.

Don’t know what happened to the unmentioned 3000 IU vitamin D and 50 mg zinc recommendations of TRIIM. So I asked. Dr. Fahy replied:

“They are still there! Just not mentioned!”

Thought briefly about enrolling in TRIIM-X, but there’s no way anyone but me gets to experiment with my body.

Dietary fibers and the aged microbiome

This 2021 rodent study investigated effects of four different types of dietary fiber on two different types of aged human microbiota:

Individual differences in gut microbiota may influence host metabolic responses to dietary fiber in humans. Dietary fibers are edible carbohydrates resistant to host digestive enzymes, and not broken down or absorbed in the small intestine.

We colonized genetically identical germ-free mice with two distinct human fecal communities and fed them isocaloric diets containing different types of fiber. We used fecal specimens from a cohort of previously analyzed samples obtained from adults in their mid-seventies.

We used 10% dietary fiber and 35% kcal derived from fat as comparable to the intake level of dietary fiber in US adults:

four diets

All mice had the same assorted fiber diet for two weeks. Mice were then switched to one of four diets described above: cellulose, inulin, pectin, and assorted fiber, and maintained in these diets for another 4 weeks.

There was a ~ 4-fold range in levels of cecal butyrate among the eight groups despite all animals consuming the same diet [before switching]. Butyrate is known to vary widely among humans and has been linked with beneficial health effects on the host:

SCFA individual differences

We chose inulin and pectin as the former is commonly used as a prebiotic, while the latter has been proven to support growth of a wide variety of gut microbes, and it is commonly used as a dietary supplement. We also chose these two dietary fibers due to their distinct structures, including differences in basic units, linkages, and degree of polymerization.

Assorted fiber diet had the same total amount of dietary fiber as treatment groups used in this study, but with more diversity [FOS and two resistant starches] in fermentable substrates, which we reasoned would support engraftment of taxa relevant to all dietary treatments. Inclusion of this group in the experimental phase also served as a control to inform whether this diet used during colonization drove major differences.

Diet and its interaction with gut community showed a significant effect on serum glucose levels. While pectin diet had an overall beneficial effect on metabolic phenotypes relative to non-fermentable cellulose for SubA-colonized mice, this diet was less favorable for SubB-colonized animals, which showed the strongest benefits on inulin fiber.

In inulin diet, mice inoculated with SubB showed decreased adiposity, decreased liver triglycerides (TG) and lower serum levels of fasting glucose relative to animals colonized with SubA. In contrast, pectin-fed mice colonized with SubB accumulated more fat mass relative to SubA-colonized counterparts, whereas serum glucose and liver TG were comparable between the two community groups.

Mice colonized with SubB showed significantly lower levels of adiposity than those colonized with SubA in the assorted fiber diet, whereas serum glucose and liver TG were comparable.

We found that these two transplanted communities elicited divergent metabolic epigenetic and transcriptional responses to the same dietary fiber. Furthermore, differences between mice colonized with these two communities varied depending on type of fiber consumed.

Populations contain a significant amount of genetic variation derived from their largely individual associated microbiomes. Dissecting effects of gut microbial vs. host genetic variation while controlling environmental exposure is practically impossible to achieve in human studies.

One-size-fits-all approaches to promote health are unlikely to elicit consistent effects across individuals. Identifying gut microbial biomarkers associated with beneficial responses to common interventions may help to stratify subjects into more effective personalized treatments.” “Gut microbiome variation modulates the effects of dietary fiber on host metabolism”

1. This study nailed it! You are what you eat, and The future of your brain is in your gut right now.

2. Group differences in cecal butyrate in the second graphic were instructive. But what really needed to be analyzed was each individual subject’s responses within the eight groups, and each individual’s characteristics.

What did or didn’t matter to each individual could then be applied and analyzed to what did or didn’t matter to its group. Researchers need to flip from a top-down statistics-package approach, to a bottoms-up individual paradigm for evidence.

3. Haven’t mentioned Increasing soluble fiber intake with inulin recently. I eat the labeled 2.5 grams serving. More than that runs into a 10 g “Over this dose would induce mild gastrointestinal symptoms” threshold.

I eat a half-dozen cloves of garlic in daily AGE-less chicken vegetable soup. Garlic contains ≈ 16% inulin, contributing 4-5 g inulin.

4. My dietary fiber intake of current practices is well beyond this study’s 10%. Several times more than our human ancestors’ estimated 100 g/day if Switch on your Nrf2 signaling pathway measurements are correct?

Trying to make my gut microbiota happy, expecting that they’ll reciprocally respond. Dietary fat content is < 10 %.

An outstanding review of Vitamin K deficiency and disease

This 2019 review focused on one Vitamin K-deficiency biomarker. All parts I’ve quoted are outside the liver, so Vitamin K deficiency ≈ Vitamin K2 deficiency.

This is a hard read with many technical details, but sometimes that’s how researchers do it:

“Active MGP (matrix Gla protein), once released into extracellular space, acts as a local inhibitor of calcification. Widespread expression of MGP points to a role of MGP that by far exceeds its well-known function as local inhibitor of calcification.

Recent research confirmed this concept, usually by measuring plasma dp-ucMGP (desphospho-uncarboxylated MGP), a biomarker reflecting poor vitamin K status:


Vitamin K plays a pivotal role in maintaining bone health. Increasing evidence also implicates MGP in maintaining bone health.

In the Health, Aging and Body Composition study, 791 older community-dwelling adults underwent magnetic resonance imaging to measure bilateral knee structural features. The highest [25%] compared with the lowest fourth of the dp-ucMGP distribution had higher odds of having:

  • Meniscus damage;
  • Osteophytes;
  • Bone marrow lesions; and
  • Subarticular cysts.

Regarding Vitamin K supplementation:

  • Studies showed a dose-dependent decrease in circulating dp-ucMGP with an 86% decrease already observed after 4 weeks of substitution by 360 μg menaquinone-7 [in 50 hemodialysis patients];
  • In a randomized double-blind trial of 244 postmenopausal women followed up for 3 years, arterial stiffness as captured by aortic pulse wave velocity or stiffness index β, decreased in intervention compared with control group.

These results should be considered as hypothesis-generating in view of small sample size, and because there were no between-group differences in vitamin K–induced changes in elastic properties of the carotid artery.

Plasma dp-ucMGP levels ranging from 1.4 to 4.6 μg/L were optimal in terms of risk of mortality and macrovascular cardiovascular illness (4.6 μg/L threshold corresponding to the 65th percentile of dp-ucMGP distribution).

Vitamin K supplementation before irreversible organ damage sets in might find its application in prevention of a wide range of disabling diseases. Circulating dp-ucMGP levels might be measured over time to track risk of vascular complications.” “Vitamin K–Dependent Matrix Gla Protein as Multifaceted Protector of Vascular and Tissue Integrity”

I usually don’t give 5+ stars to reviews. This one was different.

Yes, there could be factors other than this one Vitamin K deficiency biomarker involved in study findings. Sure, these coauthors cited their own studies. Its overall purpose, though, was to inform readers.

I’ll summarize this paper as providing evidence for a biomarker of Vitamin K2 deficiency being implicated in the development and progression of many diseases.

Red cabbage effects on gut microbiota

A tremendous 2021 study involving the group who published Our model clinical trial for Changing to a youthful phenotype with broccoli sprouts:

“The aim was to evaluate the influence of red cabbage extracts on bioaccessibility of their isothiocyanates, and their effect on intestinal microbiota using a dynamic model of human digestion treated with the gut microbiome of obese adults.

Plant plasma membrane vesicles as delivery systems for bioactive compounds has been studied. Diverse types of plant membrane vesicles could be good candidates for this purpose, such as extracellular vesicles, which are spheroids of cytosolic material surrounded by a lipid bilayer, or extracted plasma membrane from fresh plant tissue.

As an example of the latter, we used cauliflower plasma membrane vesicles, which are proteoliposomes with a high proportion of unsaturated fatty acids. There could be an interaction between plant aquaporins found in our vesicles and isothiocyanates present in red cabbage aqueous extract, which could have increased stability.

Plasma membrane vesicles may act as stabilizing carriers and feeding agents for enzymes and bile salts rather than an encapsulating agent per se. However, this aspect should be further studied.

red cabbage sfn, i3c, iberin

In the transversal colon reactor, butyric acid production by gut microbiota had a 3-fold increase after 14-day treatment for free red cabbage aqueous extract when compared to stabilization period. A 3.5-fold increase was observed when using nanonencapsulated extract.

Regarding the descending colon, a 2-fold increase in butyric acid was produced after 14 days of treatment with free red cabbage aqueous extract. A 4-fold increase was observed in production after treatment with nanoencapsulated extract.

Propionic and acetic acids were studied, but no changes were observed. The fact that encapsulated red cabbage extract provided a higher production of butyric acid pointed to future developments for design of a functional ingredient or food product for management of overweightness and obesity.” “The Influence of Red Cabbage Extract Nanoencapsulated with Brassica Plasma Membrane Vesicles on the Gut Microbiome of Obese Volunteers”

This study demonstrated that iberin was initially the third highest isothiocyanate of red cabbage after glucosinolate hydrolysis. Iberin surpassed sulforaphane to become the predominant isothiocyanate – in both free and nanoencapsulated forms – when it reached the lower colon, where most of our gut microbiota reside.

These in vitro findings were after 14 days, though, which doesn’t happen in healthy humans in vivo. Also, if sulforaphane metabolites such as dithiocarbamates and I3C breakdown products such as DIM were measured, these findings may have changed.

As noted in Tailoring measurements for broccoli sprouts, study findings of mature plants don’t necessarily apply to their sprouts. Lab analyses of broccoli sprout compounds used 9-day-old red cabbage sprouts to measure iberin (3MSOP-ITC in Figure 5). Haven’t found recent studies on iberin’s effects on gut microbiota and intestinal epithelial cells.

This study showed “a 3 to 4-fold increase in production of butyric acid with encapsulated extract treatment.” Keep leading the way. 🙂