One aspect of research on short-chain fatty acids

To further understand An overlooked gut microbiota product, a 2018 rodent study found:

“Microbial metabolites short-chain fatty acids (SCFAs) have been implicated in gastrointestinal functional, neuroimmune regulation, and host metabolism, but their role in stress-induced behavioural and physiological alterations is poorly understood

SCFAs are primarily derived from fermentation of dietary fibres, and play a pivotal role in host gut, metabolic and immune function. All these factors have previously been demonstrated to be adversely affected by stress.

Administration of SCFAs to mice undergoing psychosocial stress alleviated enduring alterations in anhedonia and heightened stress-responsiveness, as well as stress-induced increases in intestinal permeability.

experimental design

SCFA treatment alleviated psychosocial stress-induced alterations in reward-seeking behaviour, and increased responsiveness to an acute stressor and in vivo intestinal permeability. In addition, SCFAs exhibited behavioural test-specific antidepressant and anxiolytic effects, which were not present when mice had also undergone psychosocial stress.” “Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations”

One way researchers advance science is to relate aspects of their findings to previous studies. That approach works, but may miss items that weren’t covered in previous research.

This study fed specific quantities of three SCFAs – acetate, butyrate, and propionate – apparently due to previous research findings. If other SCFAs produced by gut microbiota were ignored – like crotonate (aka unsaturated butyrate) – how would that approach advance science?

I found this study from its citation in Harnessing endogenous defenses with broccoli sprouts.

Every hand’s a winner, and every hand’s a loser

Another great blog post Know When To Fold ‘Em by Dr. Paul Clayton:

“Newly formed proteins entering the endoplasmic reticulum must be correctly folded to achieve their final form and function. This is a complex procedure with a failure rate of over 80%.

When metabolism is sufficiently skewed, accuracy of protein folding in the endoplasmic reticulum falls below an already low baseline of 20%. Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum then triggers stress.

Integrated Stress Response (ISR) is something that cells do when they are affected by major stressors:

  • ISR turns down global protein synthesis, which is designed to kill virally infected or cancerous cells. If it kills the cancer cell or virally infected cell, that is the end of it.
  • If the stressor is in the heat / hypoxia / nutrient group, however, ISR effectively puts a cell into dark mode until hard times are over. Once the stressor has passed, a cell can then start to recover and return to homeostatic health.
  • But if the stressor is sustained, a low-grade ISR continues to smolder away, causing long-term impairment locally and ultimately systemically. Accumulation of misfolded or unfolded proteins activates ISR, leading to a down-regulation of protein synthesis, and increasing protein folding and degradation of unfolded proteins.

This is analogous to inflammation. Acute inflammatory responses to a pathogen or to tissue damage are entirely adaptive, and essential. Chronic inflammation, on the other hand, causes local and eventually systemic damage if left unchecked for long enough.”

A 2020 rodent study was cited for “reversing age-related cognitive decline”:

“This suggests that the aged brain has not permanently lost cognitive capacities. Rather, cognitive resources are still there, but have been somehow blocked, trapped by a vicious cycle of cellular stress.

Our work with ISR inhibition demonstrates a way to break that cycle, and restore cognitive abilities that had become walled off over time.

stress response inhibitor effects

If these findings in mice translate into human physiology, they offer hope and a tangible strategy to sustain cognitive ability as we age.” “Small molecule cognitive enhancer reverses age-related memory decline in mice”

I’m curious as to why sulforaphane hasn’t been mentioned even once in Dr. Paul Clayton’s blog, which started three years ago. Do hundreds of sulforaphane studies performed in this century not contribute to his perspective? Polyphenols are mentioned a dozen times, yet they are 1% bioavailable compared with 80% “small molecule” sulforaphane.

Advice from the song depends on your definition of money:

“Know when to walk away
Know when to run
Never count your money
When you’re sitting at the table”

Let β-glucan train your brain

This 2021 rodent study investigated yeast cell wall β-glucan’s effects on the brain’s immune system:

“Innate immune memory can manifest in two different ways, [1] immune training and [2] immune tolerance, which means [1] an enhanced or [2] suppressed immune response towards a secondary challenge. Lipopolysaccharide (LPS) and β-glucan (BG) are two commonly used ligands to induce immune training and tolerance.

Microglia, the innate immune cells of the central nervous system, can adopt diverse phenotypes and functions in health and disease. In our previous study, we have shown that LPS preconditioning induces immune tolerance in microglia.

Compared to LPS, relatively little is known about effects of BG on microglia. In this study, we report for the first time that systemic administration of BG activates microglia in vivo, and that BG preconditioning induces immune training in microglia.


Our results show that BG activated microglia without inducing significant cytokine expression.

BG- and LPS-preconditioning both induced immune training in microglia two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning induced immune tolerance in microglia where BG-induced immune training was no longer detected.” “Systemic administration of β-glucan induces immune training in microglia”

One solution to “BG-induced immune training was no longer detected” after 7 days is to take β-glucan every day. I haven’t seen studies that found β-glucan induced immune tolerance, i.e. “suppressed immune response towards a secondary challenge.”

I take allergy medicine twice a day. Switched over to a different β-glucan vendor and dose per Year One of Changing to a youthful phenotype with broccoli sprouts.

I take 1 gram of Glucan 300 capsules without eating anything an hour before or an hour afterwards. I’ve only been doing it for a week, though, and haven’t been able to separate out β-glucan effects on seasonal allergies. I’ll try stopping allergy medicine when pollen stops coating my car.

Swarming a spring sea trout run. Ospreys outcompeted gulls for breakfast.

Eat broccoli sprouts for depression

This 2021 rodent study investigated sulforaphane effects on depression:

“Activation of Nrf2 by sulforaphane (SFN) showed fast-acting antidepressant-like effects in mice by:

  • Activating BDNF;
  • Inhibiting expression of its transcriptional repressors (HDAC2 [histone deacetylase 2, a negative regulator of neuroplasticity], mSin3A, and MeCP2); and
  • Revising abnormal synaptic transmission.

In a mouse model of chronic social defeat stress (CSDS), protein levels of Nrf2 and BDNF in the medial prefrontal cortex and hippocampus were lower than those of control and CSDS-resilient mice. In contrast, protein levels of BDNF transcriptional repressors in CSDS-susceptible mice were higher than those of control and CSDS-resilient mice.

These data suggest that Nrf2 activation increases expression of Bdnf and decreases expression of its transcriptional repressors, which result in fast-acting antidepressant-like actions. Furthermore, abnormalities in crosstalk between Nrf2 and BDNF may contribute to the resilience versus susceptibility of mice against CSDS.

Nrf2-induced BDNF transcription in a model of depression.

  • Stress inhibits Nrf2 expression, which inhibits BDNF transcriptional and leads to abnormal synaptic transmission, causing depression-like behaviors in mice.
  • SFN induces BDNF transcription by activating Nrf2 and correcting abnormal synaptic transmission, resulting in antidepressant-like effects.

In conclusion:

  1. Nrf2 regulates transcription of Bdnf by binding to its exon I promoter.
  2. Inhibition of Nrf2-induced Bdnf transcription may play a role in the pathophysiology of depression.
  3. Activation of Nrf2-induced Bdnf transcription promoted antidepressant-like effects.
  4. Alterations in crosstalk between Nrf2 and BDNF may contribute to resilience versus susceptibility after stress.” “Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents”

Mid-life gut microbiota crisis

This 2019 rodent study investigated diet, stress, and behavioral relationships:

“Gut microbiome has emerged as being essential for brain health in ageing. We show that prebiotic supplementation with FOS-Inulin [a complex short- and long-chain prebiotic, oligofructose-enriched inulin] is capable of:

  • Dampening age-associated systemic inflammation; and
  • A profound yet differential alteration of gut microbiota composition in both young adult and middle-aged mice.

Middle-aged mice exhibited an increased influx of inflammatory monocytes into the brain. However, neuroinflammation at this stage was not significant enough to manifest in major cognitive impairments.

A much longer exposure to prebiotics might be needed to achieve significant effects, suggesting that supplementation may have to start earlier to be effectively preventative before alterations in the brain occur. This is particularly evident for behaviour.

Targeting gut microbiota, as we have done with a prebiotic, can affect the brain and subsequent behaviour through a variety of potential pathways including SCFAs [short-chain fatty acids], amino acids and immune pathways. All of these are interconnected. Future studies are needed to better deconvolve [figure out] such pathways in eliciting beneficial effects of inulin.

Modulatory effects of prebiotic supplementation on monocyte infiltration into the brain and accompanied regulation of age-related microglia activation highlight a potential pathway by which prebiotics can modulate peripheral immune response and alter neuroinflammation in ageing. Our data suggest a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.” “Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome” (not freely available)

This study’s experiments subjected young and middle-aged mice to eight stress tests. I appreciated efforts to trace causes to behavioral effects, since behavior provided stronger evidence.

I’m in neither life stage investigated by this study. Still, per Reducing insoluble fiber, I’ll start taking inulin next week. See Increasing soluble fiber intake with inulin.

I came across this study through its citation in How will you feel?

Inauguration day

How will you feel?

Consider this a partial repost of Moral Fiber:

“We are all self-reproducing bioreactors. We provide an environment for trillions of microbes, most of which cannot survive for long without the food, shelter and a place to breed that we provide.

They inhabit us so thoroughly that not a single tissue in our body is sterile. Our microbiome affects our development, character, mood and health, and we affect it via our diet, medications and mood states.

The microbiome:

  • Affects our thinking and our mood;
  • Influences how we develop;
  • Molds our personalities;
  • Our sociability;
  • Our responses to fear and pain;
  • Our proneness to brain disease; and
  • May be as or more important in these respects than our genetic makeup.

Dysbiosis has become prevalent due to removal of prebiotic fibers from today’s ultra-processed foods. I believe that dietary shift has created a generation of humans less able to sustain or receive love.

They suffer from reduced motivation and lower impulse control. They are more anxious, more depressed, more selfish, more polarized, and therefore more susceptible to the corrosive politics of identity.

Other recent blog posts by Dr. Paul Clayton and team include Skin in The Game and Kenosha Kids.

Image from Thomas Cole : The Consummation, The Course of the Empire (1836) Canvas Gallery Wrapped Giclee Wall Art Print (D4060)

Eat oats today!

This 2020 food chemistry review provided phenolic-compound reasons to eat oats:

“Phenolamides result from the conjugation of hydroxycinnamic acids with amines. These products contain a variety of metabolic, chemical, and functional capabilities due to the large number of possible combinations among the parent compounds.

Of the currently known phenolamides, the most common are avenanthramides (AVAs), which are unique in oats. AVAs possess anti-inflammatory, anti-itch, anti-atherosclerosis, antioxidant, anti-cancer, anti-obesity, anti-fungal, anti-microbial, and neuroprotective properties.

Twenty-nine C-type AVAs have been identified in oats, and twenty-six A-type AVAs.

  • C-type AVAs in commercially available oat products range from 36.49-61.77 mg/kg (fresh weight).
  • A-type AVAs represent approximately 22.5% of total AVA levels in regular oats and 24.7-33.0% in commercial sprouted oats.

Steeping raw groats increased AVA concentrations.”

These reviews were referenced:

“Since publication of these two reviews, a few new studies reported AVAs’ beneficial health effects, mainly related to their anti-inflammatory and anti-cancer activities. AVAs can:

  • Significantly decrease IL-6, IL-8, and MCP-1 in endothelial cells;
  • Inhibit IL-1β- and TNF-α-induced NF-κB activation; as well as
  • Expression of adhesion molecules; and
  • Adhesion of monocytes to endothelial cell monolayer.

In 2020, the first evaluation of anti-inflammation effects of A-type AVAs was published from our own group. Fifteen A-type AVAs from commercial sprouted oat products interacted with lipopolysaccharide-induced nitric oxide production and iNOS expression.

Colloidal oatmeal’s natural components, AVAs, help to restore and maintain skin barrier function. AVAs are safe, well tolerated, and can be effective as adjuvant treatment in atopic dermatitis.

In one mouse model, a C-type AVA was able to mitigate many adverse effects of Alzheimer’s Disease. It restored hippocampal long-term potentiation and synaptic function, enhanced memory function, suppressed pro-inflammatory cytokines TNF-α and IL-6 levels, reduced caspase-3 levels, and increased pS9GSK-3β and IL-10 levels.

AVAs downregulated expression of hTERT and MDR1, pro-survival genes for cancer cells, and COX-2 mRNA and PGE2 levels, known pro-inflammatory markers. AVAs induced apoptosis by activating caspases 8, 3, and 2.” “The Chemistry and Health Benefits of Dietary Phenolamides” (not freely available)

Hadn’t thought about sprouting oats before this paper.

Clearing out the 2020 queue of interesting papers

I’ve partially read these 39 studies and reviews, but haven’t taken time to curate them.

Early Life

  1. Intergenerational Transmission of Cortical Sulcal Patterns from Mothers to their Children (not freely available)
  2. Differences in DNA Methylation Reprogramming Underlie the Sexual Dimorphism of Behavioral Disorder Caused by Prenatal Stress in Rats
  3. Maternal Diabetes Induces Immune Dysfunction in Autistic Offspring Through Oxidative Stress in Hematopoietic Stem Cells
  4. Maternal prenatal depression and epigenetic age deceleration: testing potentially confounding effects of prenatal stress and SSRI use
  5. Maternal trauma and fear history predict BDNF methylation and gene expression in newborns
  6. Adverse childhood experiences, posttraumatic stress, and FKBP5 methylation patterns in postpartum women and their newborn infants (not freely available)
  7. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double‐blind, controlled feeding study
  8. Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice
  9. Epigenetic mechanisms activated by childhood adversity (not freely available)

Epigenetic clocks

  1. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality (not freely available)
  2. Epigenetic age is a cell‐intrinsic property in transplanted human hematopoietic cells
  3. An epigenetic clock for human skeletal muscle
  4. Immune epigenetic age in pregnancy and 1 year after birth: Associations with weight change (not freely available)
  5. Vasomotor Symptoms and Accelerated Epigenetic Aging in the Women’s Health Initiative (WHI) (not freely available)
  6. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data


  1. The Intersection of Epigenetics and Metabolism in Trained Immunity (not freely available)
  2. Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade
  3. Transcriptional Regulation of Inflammasomes
  4. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-κB signaling pathways
  5. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands
  6. Repeated stress exposure in mid-adolescence attenuates behavioral, noradrenergic, and epigenetic effects of trauma-like stress in early adult male rats
  7. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements
  8. Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation
  9. Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights
  10. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein
  11. Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice
  12. FKBP5-associated miRNA signature as a putative biomarker for PTSD in recently traumatized individuals
  13. Metabolic and epigenetic regulation of T-cell exhaustion (not freely available)


  1. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches
  2. Epigenetic regulation of bone remodeling by natural compounds
  3. Microglial Corpse Clearance: Lessons From Macrophages
  4. Plasma proteomic biomarker signature of age predicts health and life span
  5. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk

Broccoli sprouts

  1. Dietary Indole-3-Carbinol Alleviated Spleen Enlargement, Enhanced IgG Response in C3H/HeN Mice Infected with Citrobacter rodentium
  2. Effects of caffeic acid on epigenetics in the brain of rats with chronic unpredictable mild stress
  3. Effects of sulforaphane in the central nervous system
  4. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era (not freely available)
  5. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls (not freely available)
  6. Sulforaphane Reverses the Amyloid-β Oligomers Induced Depressive-Like Behavior (not freely available)

Dietary contexts matter

Two papers illustrated how actions of food compounds are affected by their contexts. The first was a 2020 UCLA rodent study:

“Long-chain polyunsaturated fatty acids (PUFAs), particularly omega-3 (n-3) PUFAs, have been indicated to play important roles in various aspects of human health. Controversies are observed in epidemiological and experimental studies regarding the benefits or lack of benefits of n-3 PUFAs.

Dietary docosahexaenoic acid (DHA; 22:6 n-3) supplementation improved select metabolic traits and brain function, and induced transcriptomic and epigenetic alterations in hypothalamic and hippocampal tissues in both context-independent and context-specific manners:

  • In terms of serum triglyceride, glycemic phenotypes, insulin resistance index, and memory retention, DHA did not affect these phenotypes significantly when examined on the chow diet background, but significantly improved these phenotypes in fructose-treated animals.
  • Genes and pathways related with tissue structure were affected by DHA regardless of the dietary context, although the direction of changes are not necessarily the same between contexts. These pathways may represent the core functions of DHA in maintaining cell membrane function and cell signaling.
  • DHA affected the mTOR signaling pathway in hippocampus. In the hypothalamus, altered pathways were more related to innate immunity, such as cytokine-cytokine receptors, NF-κB signaling pathway, and Toll-like receptor signaling pathway.

DHA exhibits differential influence on epigenetic loci, genes, pathways, and metabolic and cognitive phenotypes under different dietary contexts.” “Multi‐tissue Multi‐omics Nutrigenomics Indicates Context‐specific Effects of DHA on Rat Brain” (not freely available)

A human equivalent age period of the subjects was 12 to 20 years old. If these researchers want to make their study outstanding, they’ll contact their UCLA colleague Dr. Steven Horvath, and apply his new human-rat relative biological age epigenetic clock per A rejuvenation therapy and sulforaphane.

The second paper was a 2016 review Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability (not freely available):

“The biological activities of food phytochemicals depend upon their bioaccessibility and bioavailability which can be affected by the presence of other food components including other bioactive constituents. For instance, α-tocopherol mixed with a flavonol (kaempferol or myricetin) is more effective in inhibiting lipid oxidation induced by free radicals than each component alone.

Interactions of phytochemicals may enhance or reduce the bioavailability of a given compound, depending on the facilitation/competition for cellular uptake and transportation. For example, β-carotene increases the bioavailability of lycopene in human plasma, and quercetin-3-glucoside reduces the absorption of anthocyanins.

Combinations of food extracts containing hydrophilic antioxidants and lipophilic antioxidants showed very high synergistic effects on free radical scavenging activities. A number of phytochemical mixtures and food combinations provide synergistic effects on inhibiting inflammation.

More research should be conducted to understand mechanisms of bioavailability interference considering physiological concentrations, food matrices, and food processing.”

Each of us can set appropriate contexts for our food consumption. Broccoli sprout synergies covered how I take supplements and broccoli sprouts together an hour or two before meals to keep meal contents from lowering sulforaphane bioavailability.

Combinations of my 19 supplements and broccoli sprouts are too many (616,645) for complete analyses. Just pairwise comparisons like the second paper’s example below would be 190 combinations.

binary isobologram

Contexts for each combination’s synergistic, antagonistic, or additive activities may also be influenced by other combinations’ results.

My consumption of flax oil (alpha linolenic acid C18:3) probably has effects similar to DHA since it’s an omega-3 PUFA and I take it with food. The first study’s human equivalent DHA dose was 100mg/kg, with its citation for clinical trials stating “1–9 g/day (0.45–4% of calories) n-3 PUFA.”

A 2020 review Functional Ingredients From Brassicaceae Species: Overview and Perspectives had perspectives such as:

“In many circumstances, the isolated bioactive is not as bioavailable or metabolically active as in the natural food matrix.”

It discussed categories but not combinations of phenolics, carotenoids, phytoalexins, terpenes, phytosteroids, and tocopherols, along with more well-known broccoli compounds.

Diving for breakfast

Treating psychopathological symptoms will somehow resolve causes?

This 2020 Swiss review subject was potential glutathione therapies for stress:

“We examine available data supporting a role for GSH levels and antioxidant function in the brain in relation to anxiety and stress-related psychopathologies. Several promising compounds could raise GSH levels in the brain by either increasing availability of its precursors or expression of GSH-regulating enzymes through activation of Nrf2.

GSH is the main cellular antioxidant found in all mammalian tissues. In the brain, GSH homeostasis has an additional level of complexity in that expression of GSH and GSH-related enzymes are not evenly distributed across all cell types, requiring coordination between neurons and astrocytes to neutralize oxidative insults.

Increased energy demand in situations of chronic stress leads to mitochondrial ROS overproduction, oxidative damage and exhaustion of GSH pools in the brain.

Several compounds can function as precursors of GSH by acting as cysteine (Cys) donors such as taurine or glutamate (Glu) donors such as glutamine (Gln). Other compounds stimulate synthesis and recycling of GSH through activation of the Nrf2 pathway including sulforaphane and melatonin. Compounds such as acetyl-L-carnitine can increase GSH levels.” “Therapeutic potential of glutathione-enhancers in stress-related psychopathologies” (not freely available)

Many animal studies of “stress-related psychopathologies” were cited without noting applicability to humans. These reviewers instead had curious none-of-this-means-anything disclaimers like:

“Comparisons between studies investigating brain disorders of such different nature such as psychiatric disorders or neurodegenerative diseases, or even between brain or non-brain related disorders should be made with caution.”

Regardless, this paper had informative sections for my 27th week of eating broccoli sprouts every day.

1. I forgot to mention in Broccoli sprout synergies that I’ve taken 500 mg of trimethyl glycine (aka betaine) twice a day for over 15 years. Section 3.1.2 highlighted amino acid glycine:

“Endogenous synthesis is insufficient to meet metabolic demands for most mammals (including humans) and additional glycine must be obtained from diet. While most research has focused on increasing cysteine levels in the brain in order to drive GSH synthesis, glycine supplementation alone or in combination with cysteine-enhancing compounds are gaining attention for their ability to enhance GSH.”

2. Amino acid taurine dropped off my supplement regimen last year after taking 500 mg twice a day for years. It’s back on now after reading Section 3.1.3:

“Most studies that reported enhanced GSH in the brain following taurine treatment were performed under a chronic regimen and used in age-related disease models.

Such positive effects of taurine on GSH levels may be explained by the fact that cysteine is the essential precursor to both metabolites, whereby taurine supplementation may drive metabolism of cysteine towards GSH synthesis.”

3. A study in Upgrade your brain’s switchboard with broccoli sprouts was cited for its potential:

“Thalamic GSH values significantly correlated with blood GSH levels, suggesting that peripheral GSH levels may be a marker of brain GSH content. Studies point to the capacity of sulforaphane to function both as a prophylactic against stress-induced behavioral changes and as a positive modulator in healthy animals.”

Sunrise minus 5 minutes

Unraveling oxytocin – is it nature’s medicine?

This 2020 review attempted to consolidate thousands of research papers on oxytocin:

“Chemical properties of oxytocin make this molecule difficult to work with and to measure. Effects of oxytocin are context-dependent, sexually dimorphic, and altered by experience. Its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.

Widely used medical interventions i.e.:

  • Exogenous oxytocin, such as Pitocin given to facilitate labor;
  • Opioid medications that block the oxytocin system; or
  • Cesarean sections that alter exposure to endogenous oxytocin

have lasting consequences for the offspring and/or mother.

Such exposures hold the potential to have epigenetic effects on the oxytocin systems, including changes in DNA methylation. These changes in turn would have lasting effects on the expression of receptors for oxytocin, leaving individuals differentially able to respond to oxytocin and also possibly to the effects of vasopressin.

Regions with especially high levels of OXTR [oxytocin receptor gene] are:

  • Various parts of the amygdala;
  • Bed nucleus of the stria terminalis;
  • Nucleus accumbens;
  • Brainstem source nuclei for the autonomic nervous system;
  • Systems that regulate the HPA axis; as well as
  • Brainstem tissues involved in pain and social attention.

Oxytocin protects neural cells against hypoxic-ischemic conditions by:

  • Preserving mitochondrial function;
  • Reducing oxidative stress; and
  • Decreasing a chromatin protein that is released during inflammation

which can activate microglia through the receptor for advanced glycation end products (RAGE). RAGE acts as an oxytocin-binding protein facilitating the transport of oxytocin across the blood-brain barrier and through other tissues.

Directionality of this transport is 5–10 times higher from the blood to the brain, in comparison with brain to blood transport. Individual differences in RAGE could help to predict cellular access to oxytocin and might also facilitate access to oxytocin under conditions of stress or illness.

Oxytocin and vasopressin and their receptors are genetically variable, epigenetically regulated, and sensitive to stressors and diet across the lifespan. As one example, salt releases vasopressin and also oxytocin.

Nicotine is a potent regulator of vasopressin. Smoking, including prenatal exposure of a fetus, holds the potential to adjust this system with effects that likely differ between males and females and that may be transgenerational.

Relative concentrations of endogenous oxytocin and vasopressin in plasma were associated with:

These studies support the usefulness of measurements of both oxytocin and vasopressin but leave many empirical questions unresolved.

The vast majority of oxytocin in biosamples evades detection using conventional approaches to measurement.” “Is Oxytocin Nature’s Medicine?”

I appreciated efforts to extract worthwhile oxytocin research from countless poorly performed studies, research that wasted resources, and research that actually detracted from science.

I was disappointed that at least one of the reviewers didn’t take this review as an opportunity to confess their previous wastes like three flimsy studies discussed in Using oxytocin receptor gene methylation to pursue an agenda.

Frank interpretations of one’s own study findings to acknowledge limitations is one way researchers can address items upfront that will be questioned anyway. Such analyses also indicate a goal to advance science.

Although these reviewers didn’t provide concrete answers to many questions, they highlighted promising research areas, such as:

  • Improved approaches to oxytocin measurements;
  • Prenatal epigenetic experience associations with oxytocin and OXTR; and
  • Possible transgenerational transmission of these prenatal epigenetic experiences.

Get serious about advanced glycation end products (AGEs)

Ever heard about AGEs? Here are three papers that describe how AGEs affect humans.

First is a 2020 Italian review Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System:

“Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease.

Neurotoxicity can be induced by glycation reactions. Since glycation is a nonenzymatic process, proteins characterized by a slow turnover are those that more easily accumulate AGEs.

Methylglyoxal (MG) can occur as glycolysis by-product, but it is also present in foods (especially cooked and baked), beverages (mainly those fermented), and cigarette smoke, and it is considered the most potent precursor of AGE formation. More than 20 different AGEs have been identified in foods and in human tissues.

AGE accumulation, oxidative stress, and inflammation are related to AGE ability to bind specific receptors called RAGE. RAGE expression increases during aging, cancer, cardiovascular diseases, AD [Alzheimer’s], PD [Parkinson’s], and other neurodegenerative diseases.”

A 2015 study by some of the same authors Antiglycative activity of sulforaphane: a new avenue to counteract neurodegeneration? was cited for a treatment in addition to changing one’s diet to be AGE-less.

“When MG production is increased by high glucose or oxidative stress, glycated proteins accumulate in the brain and lead to glycative stress, playing a fundamental role in the establishment of different neurodegenerative disorders.

Our results indicated that SF [sulforaphane] counteracts ROS by two possible mechanisms of action: an increase of intracellular GSH [glutathione] levels and an enhancement of MG-detoxification through the up-regulation of the glyoxalase (GLO1) systems. GLO1 up-regulation is mediated by the transcription factor Nrf2. SF has been demonstrated to activate Nrf2.

Another mechanism by which SF exerts its neuroprotective activity against MG-induced glycative damage is the modulation of mitogen-activated protein kinase (MAPK) signaling pathways involved in apoptotic cell death. All MAPK signaling pathways are activated in AD.

Brain-derived neurotrophic factor (BDNF) is associated with neuronal survival through its interactions with the tyrosine receptor kinase B (TrkB) and p75 cellular receptors. BDNF expression levels are reduced in the brain of AD patients. SF pre-treatment, before MG addition, not only further increased BDNF levels, but also significantly induced TrkB protein levels reverting MG negative effect on this receptor.

SF totally reverts the reduction of glucose uptake caused by MG exposure. SF can be defined as a multitarget agent modulating different cellular functions leading to a pro-survival frame of particular importance in the prevention / counteraction of multifactorial neurodegenerative diseases.”

A 2020 review Non-enzymatic covalent modifications: a new link between metabolism and epigenetics investigated glycation:

“Non-enzymatic covalent modifications (NECMs) by chemically reactive metabolites have been reported to manipulate chromatin architecture and gene transcription. Unlike canonical post-translational modifications (PTMs), NECMs accumulate over time and are much more dependent on the cellular microenvironment.

A. Guanine residues in DNA and RNA can undergo methylglyoxal glycation, thereby inducing DNA and RNA damage. This DNA damage has few corresponding repair pathways.

B. Histones are primary glycation substrates because of their long half-lives and abundant lysine and arginine residues. Histone glycation was found to induce epigenetic dysregulation through three distinct mechanisms:

  1. Competition with essential enzymatic PTMs for sites (e.g., glycation adducts replace H3K4me3 and H3R8me2);
  2. Changing the charge states of histone tails and subsequently affecting the compaction state of the fiber; and
  3. Altering three-dimensional chromatin architecture by inducing both histone-histone and histone-DNA crosslinking.

Epigenetic impacts of histone glycation were shown to be dependent on sugar concentration and exposure time. Histone and DNA glycation may lead to long term epigenetic impacts on immune responses.

C. Glycation of multiple lysine residues of NRF2 inhibits its oncogenic function. Sugar molecules can influence epigenetic events through glycation of transcription factors and/or their associated regulatory proteins.”

The Transcription factor glycation section referenced a 2011 paper Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications:

“Nrf2 mRNA level is unaffected by treatment with sulforaphane, suggesting that cellular expression of Nrf2 protein is posttranscriptionally regulated. Posttranslational modifications of Keap1 and Nrf2 proteins seem to play an important role in the regulation of ARE‐dependent gene expression.”

“Neurodegenerative diseases are incurable?” Take responsibility for your own one precious life.

Other curated AGEs papers include:

Broccoli sprout synergies

I was asked for examples of broccoli sprout synergies with supplements mentioned in Week 19 of Changing to a youthful phenotype with broccoli sprouts. I take supplements and broccoli sprouts together an hour or two before meals to keep meal contents from lowering sulforaphane bioavailability. Sulforaphane peaks in plasma between 1 and 2 hours after ingestion.

sulforaphane peak plasma

I started splitting broccoli sprout doses after reading the first study of A pair of broccoli sprout studies. The second study was Untargeted metabolomic screen reveals changes in human plasma metabolite profiles following consumption of fresh broccoli sprouts.

Those subjects ate only “a single dose of fresh broccoli sprouts (providing 200 μmol SFN equivalents) at 8 AM on study day 1.” A 200 μmol amount of sulforaphane is a 35 mg weight.

For comparison, my daily consumption is a worst-case 52 mg sulforaphane from microwaving 131 g of 3-day-old broccoli sprouts per Estimating daily consumption of broccoli sprout compounds. Every day for 22 weeks now. 🙂

The second study’s measurements through 48 hours produced this informative graphic and text:

“Of the features we identified using metabolite databases and classified as endogenous, eleven were significantly altered.

  • Glutathione (GSH) – a major intracellular antioxidant that conjugates with SFN during metabolism – was significantly decreased in plasma at 6, 12 and 24 hours following sprout intake.
  • GSH precursors glutamine (3 and 24 hours) and cysteine (12 and 24 hours) also decreased.
  • We observed significant decreases in dehydroepiandrosterone (DHEA) at 3, 6 and 12 hours.
  • Decreases in fatty acids reported here suggest that even a single dose of broccoli sprouts may alter plasma lipids in healthy adult populations.

While this study focuses largely on potential effects of SFN, broccoli sprouts contain many other bioactive components (e.g., indoles) that could be responsible for our observations as well as additional health benefits.”

Supplements I take twice daily with broccoli sprouts:

  • 1 gram L-glutamine for replenishment and other purposes;
  • 25 mg DHEA to replenish and other effects;
  • 15 mg then 50 mg zinc, which has a role in GSH metabolism;
  • 500 mg glucosamine (anti-inflammatory, crosstalk with Nrf2 signaling pathway);
  • 500 mg acetyl-L-carnitine (induces Nrf2-dependent mitochondrial biogenesis); and
  • 1400 IU then 2000 IU Vitamin D. A major portion of its effects is Nrf2 activation, like sulforaphane. A virtuous circle develops when taken with broccoli sprouts in that the Vitamin D receptor is a Nrf2 target gene inducible by sulforaphane, which then upregulates Nrf2 expression levels.

One of the things eating Boring Chicken Vegetable Soup twice a day does is replenish cysteine. I eat that and steel-cut oats (another cysteine source) separately from broccoli sprouts.

I take 1 gram flax oil with breakfast and dinner instead of with broccoli sprouts. Haven’t found relevant research on whether broccoli sprout compounds decrease omega-3 polyunsaturated alpha linolenic acid C18:3 as they do these six endogenous fatty acids.

Both studies investigated effects of fresh broccoli sprouts. Timing of their measured decreases and increases are different for me because I microwave broccoli sprouts up to but not exceeding 60°C (140°F).

A section of Microwave broccoli seeds to create sulforaphane highlighted metabolic differences among fresh broccoli sprouts, microwaved broccoli sprouts, and broccoli sprout supplements.

“A metabolic profile resulting from my current practices is probably between the Sprout and BSE (broccoli sprout extract) divided-dose statistics:

  1. Sulforaphane intake is greater than eating raw broccoli sprouts because microwaving 3-day-old broccoli sprouts creates sulforaphane in them before eating.
  2. Sulforaphane uptake from microwaved broccoli sprouts is quicker than eating raw broccoli sprouts. It may not be as immediate as taking sulforaphane supplements, which are usually powders.
  3. Sulforaphane dose from microwaved broccoli sprouts is less dependent on an individual’s metabolism than eating raw broccoli sprouts.
  4. Sulforaphane release from microwaved broccoli sprouts continues on to the gut as does eating raw broccoli sprouts. Sulforaphane release from supplements may not per Does sulforaphane reach the colon?.”

Metabolism of broccoli sprout glucoraphanin and other glucosinolates that aren’t preferentially hydrolyzed by microwaving and thorough chewing is assisted in the gut twice a day by:

  • 6 billion IU acidophilus; and
  • 750 mg fructo-oligosaccharides.

See Treating psychopathological symptoms will somehow resolve causes? for updates.


If you can stand the woo of two Californians trying to outwoo each other, listen to these five podcasts with a sleep scientist.

“Ambien, sedation, hypnotives, are not sleep.

Sleep is a life support system. It’s the Swiss army knife of health.

Lack of sleep is like a broken water pipe in your home that leaks down into every nook and cranny of your physiology.

Sleep research is not being transmitted to clinical practice.”

I live on the US East Coast. Hyperbole in normal conversations outside of urban centers is an exception.

It’s different on the West Coast. For example:

  • Interviewer assertions regarding heart rate variability should be compared and contrasted with Dead physiological science zombified by psychological research evidence that:

    “A broad base of further evidence was amassed within human cardiac, circulatory, and autonomic physiology such that the hypotheses do not work as described.”

  • Interviewer favorable comments for MDMA (Ecstasy) “to deal with issues of underlying trauma, anxiety, and depression.”

Sulforaphane and RNAs

This 2020 Texas review subject was long non-coding RNAs:

“We review the emerging significance of long non-coding RNAs (lncRNA) as downstream targets and upstream regulators of the Nrf2 signaling pathway, a critical mediator of diverse cellular processes linked to increased cell survival.

It is believed that more than 3% of human genes are regulated by the Nrf2/Keap1 pathway. In addition to the classical cytoprotective and oxidative stress response genes transactivated by Nrf2, emerging evidence suggests a role for non-coding transcript regulation at the level of noncoding RNAs, [which] far outnumber protein-coding genes in the human genome.

One important distinction between miRNAs and lncRNAs is that the latter are often species-specific, meaning that a human lncRNA typically cannot be studied in the mouse or rat, and vice versa.

Sulforaphane (SFN) acts via multiple mechanisms to modulate gene expression, including the induction of Nrf2-dependent signaling. In addition to the established canonical targets of Nrf2, such as NQO1 and HMOX1, SFN altered the expression of multiple lncRNAs.

Given that SFN induces NMRAL2P [a lncRNA pseudogene] and several other lncRNAs in colon cancer cells, further studies are warranted on their respective roles as upstream regulators and/or downstream targets of Nrf2 signaling.

Pharmacological modulation of Nrf2 is considered a viable strategy against chronic conditions that are accompanied by oxidative stress and inflammation:

  • DMF [dimethyl fumurate] is the most successful Nrf2 activator, FDA-approved in 2013 for the treatment of relapsing remitting multiple sclerosis. However, DMF causes leukopenia and other side-effects.
  • Bardoxolone cleared Phase II clinical trials for the treatment of advanced chronic kidney disease and type 2 diabetes mellitus, but was halted in Phase III trials due to cardiovascular concerns.
  • SFN is relatively unstable at room temperature.

We used reported bioinformatics approaches to search for putative ARE [antioxidant response element] sequences among the entire set of 16,000+ annotated human lncRNAs. 13,285 promoter regions contained one or more potential binding sites for Nrf2.” “Emerging crosstalk between long non-coding RNAs and Nrf2 signaling”

This study hyped lncRNAs in that only 7 have been validated as Nrf2 targets, and 8 validated as Nrf2 regulators. For regulators, “protein and/or miRNA interacting partners are yet to be fully corroborated” as well.

Also, there’s no need for a “SFN is relatively unstable at room temperature” problem. Just create sulforaphane right before consuming it.

Twice a day I microwave an average 65.5 grams of 3-day-old broccoli sprouts immersed in 100 ml water with a 1000W microwave on full power for 35 seconds to ≤ 60°C. After microwaving I transfer broccoli sprouts to a strainer, and wait five minutes to allow further myrosinase hydrolization of glucoraphanin and other glucosinolates into sulforaphane and other healthy compounds.