Non-CpG DNA methylation

This 2017 Korean review compared and contrasted CpG and non-CpG DNA methylation: “Non-CpG methylation is restricted to specific cell types, such as pluripotent stem cells, oocytes, neurons, and glial cells. Accumulation of methylation at non-CpG sites and CpG sites in neurons seems to be involved in development and disease etiology. Non-CpG methylation is established during … Continue reading Non-CpG DNA methylation

The epigenetics of perinatal stress

This 2019 McGill review discussed long-lasting effects of perinatal stress: “Epigenetic processes are involved in embedding the impact of early-life experience in the genome and mediating between social environments and later behavioral phenotypes. Since these phenotypes are apparent a long time after the early experience, the changes in gene expression programming must be stable. Although … Continue reading The epigenetics of perinatal stress

Do epigenetic clocks measure causes or effects?

The founder of the PhenoAge epigenetic clock methodology authored this 2020 article: “The Ge[r]oscience paradigm suggests that targeting the aging process could delay or prevent the risk of multiple major age-related diseases. We need clinically valid measures of the underlying biological process and/or classification criteria for what it means to be biologically, rather than chronologically, … Continue reading Do epigenetic clocks measure causes or effects?

A blood plasma aging clock

This 2019 Stanford human study developed an aging clock using blood plasma proteins: “We measured 2,925 plasma proteins from 4,331 young adults to nonagenarians [18 – 95] and developed a novel bioinformatics approach which uncovered profound non-linear alterations in the human plasma proteome with age. Waves of changes in the proteome in the fourth, seventh, … Continue reading A blood plasma aging clock

Using oxytocin receptor gene methylation to pursue an agenda

A pair of 2019 Virginia studies involved human mother/infant subjects: “We show that OXTRm [oxytocin receptor gene DNA methylation] in infancy and its change is predicted by maternal engagement and reflective of behavioral temperament.” “Epigenetic dynamics in infancy and the impact of maternal engagement” “Infants with higher OXTRm show enhanced responses to anger and … Continue reading Using oxytocin receptor gene methylation to pursue an agenda

A GWAS meta-analysis of two epigenetic clocks

This 2019 UK human study conducted a meta-analysis of genome-wide association studies of two epigenetic clocks using 13,493 European-ancestry individuals aged between ten and 98 years: “Horvath-EAA, described in previous publications as ‘intrinsic’ epigenetic age acceleration (IEAA), can be interpreted as a measure of cell-intrinsic ageing that exhibits preservation across multiple tissues, appears unrelated to … Continue reading A GWAS meta-analysis of two epigenetic clocks

A strawman argument against epigenetic clocks

This 2019 review of epigenetic clocks by Washington cancer researchers ignored the elephant in the room, and repeatedly returned to an argument for randomness as a cause for aging and disease: “A time-dependent stochastic event process, like epigenetic drift, could lead to cancer formation through the accumulation of random epigenetic alterations that, through chance, eventually … Continue reading A strawman argument against epigenetic clocks

Do genes or maternal environments shape fetal brains?

This 2019 Singapore human study used Diffusion Tensor Imaging on 5-to-17-day old infants to find: “Our findings showed evidence for region-specific effects of genotype and GxE on individual differences in human fetal development of the hippocampus and amygdala. Gene x Environment models outcompeted models containing genotype or environment only, to best explain the majority of … Continue reading Do genes or maternal environments shape fetal brains?

Developmental disorders and the epigenetic clock

This 2019 UK/Canada/Germany human study investigated thirteen developmental disorders to identify genes that changed aspects of the epigenetic clock: “Sotos syndrome accelerates epigenetic aging [+7.64 years]. Sotos syndrome is caused by loss-of-function mutations in the NSD1 gene, which encodes a histone H3 lysine 36 (H3K36) methyltransferase. This leads to a phenotype which can include: Prenatal and … Continue reading Developmental disorders and the epigenetic clock

Epigenetic clock statistics and methods

This 2018 Chinese study was a series of statistical and methodological counter-arguments to a previous epigenetic clock study finding that: “Only [CpG] sites mapping to the ELOVL2 promoter constitute cell and tissue-type independent aDMPs [age-associated differentially methylated positions].” The study used external data sets and the newer epigenetic clock’s fibroblast data in its analyses to … Continue reading Epigenetic clock statistics and methods