Flawed epigenetic measurements of behavioral experiences

This 2018 New York rodent study not only wasted resources but also speciously attempted to extrapolate animal study findings to humans:

“While it is clear that behavioral experience modulates epigenetic profiles, it is less evident how the nature of that experience influences outcomes and whether epigenetic/genetic “biomarkers” could be extracted to classify different types of behavioral experience.

Male and female mice were subjected to either:

  • a Fixed Interval (FI) schedule of food reward, or
  • a single episode of forced swim followed by restraint stress, or
  • no explicit behavioral experience

after which global expression levels of two activating (H3K9ac and H3K4me3) and two repressive (H3K9me2 and H3k27me3) post-translational histone modifications (PTHMs), were measured in hippocampus (HIPP) and frontal cortex (FC).

A random subset of 5 of the 12 animals from each sex/behavioral experience group were used for these analyses. FC and HIPP were dissected from each of those 5 brains and homogenized for subsequent analyses. Thus, sample size for PTHM expression levels was n = 5 for each region/sex/behavioral treatment group and all PTHM expression level analyses utilized the homogenized tissue.

The specific nature of the behavioral experience differentiated profiles of PTHMs in a sex- and brain region-dependent manner, with all 4 PTHMs changing in parallel in response to different behavioral experiences. Global PTHMs may provide a higher-order pattern recognition function.”


The researchers knew or should have known that measuring “global expression levels” in “homogenized tissue” of “n = 5” subjects was flawed, and they did it anyway. They acknowledged some of the numerous study design defects with qualifiers such as:

“Even though these were global levels of histone modifications (and thus not indicative of changes at specific genes or sites on genes)..

As FS-RS behavioral experience was completed before FI behavioral experience, a longer overall post-behavior experience time (approximately 1 week) elapsed for this group, resulting in some differences in overall timing between these experiences and global PTHM assessment. However, extending the duration of the FS-RS experience (i.e., repeated exposures) would also have led to habituation..”

Did they purposely make these mistakes because of the “biomarkers” paradigm?

What would they have found if they had followed their judgments and training to design a better study? Experience-dependent histone modifications that differed by gender and brain region was certainly a promising research opportunity.

As for extrapolating the cited animal study findings to humans? Ummm..NO!

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060276/ “Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels”

Advertisements

Prenatal programming of human HPA axis development

This 2017 UC Irvine human review subject provided details of how fetal hypothalamic-pituitary-adrenal components and systems develop, and how they are epigenetically changed by the mother’s environment:

“The developmental origins of disease or fetal programming model predicts that intrauterine exposures have life-long consequences for physical and psychological health. Prenatal programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis is proposed as a primary mechanism by which early experiences are linked to later disease risk.

Development of the fetal HPA axis is determined by an intricately timed cascade of endocrine events during gestation and is regulated by an integrated maternal-placental-fetal steroidogenic unit. Mechanisms by which stress-induced elevations in hormones of maternal, fetal, or placental origin influence the structure and function of the emerging fetal HPA axis are discussed.

Human gestational physiology and fetal HPA axis development differ even from that of closely related nonhuman primates, thereby limiting the generalizability of animal models. This review will focus solely on studies of prenatal stress and fetal HPA axis development in humans.”


1. Every time I read a prenatal study I’m in awe of all that has to go right, and at the appropriate time, and in sequence, for a fetus to be undamaged. Add in what needs to happen at birth, during infancy, and throughout early childhood, and it seems impossible for any human to escape epigenetic damage.

2. The reviewers referenced human research performed with postnatal subjects, as well as animal studies, despite the disclaimer:

This review will focus solely on studies of prenatal stress and fetal HPA axis development in humans.”

This led to blurring of what had been studied or not with human fetuses regarding the subject.

3. The reviewers uncritically listed many dubious human studies that had both stated and undisclosed severe limitations on their findings. It’s more appropriate for reviewers to offer informed reviews of cited studies, as Sex-specific impacts of childhood trauma summarized with cortisol:

“Findings are dependent upon variance in extenuating factors, including but not limited to, different measurements of:

  • early adversity,
  • age of onset,
  • basal cortisol levels, as well as
  • trauma forms and subtypes, and
  • presence and severity of psychopathology symptomology.”

4. The paper would have been better had the researchers stayed on topic with their stated intention and critically reviewed only studies with solid evidence of “Developmental origins of the human hypothalamic-pituitary-adrenal axis.” Let other reviews cover older humans, animals, and questionable evidence.

5. I asked the reviewers to provide a searchable file so that their work could be better used as a reference.

https://www.researchgate.net/publication/318469661_Developmental_origins_of_the_human_hypothalamic-pituitary-adrenal_axis “Developmental origins of the human hypothalamic-pituitary-adrenal axis” (registration required)

Going off the rails with the biomarker paradigm

This 2018 US government rodent study used extreme dosages to achieve its directed goals of demonizing nicotine and extolling the biomarker paradigm:

“This study examined whether adolescent nicotine exposure alters adult hippocampus-dependent learning, involving persistent changes in hippocampal DNA methylation and if choline, a dietary methyl donor, would reverse and mitigate these alterations.

Mice were chronically treated with nicotine (12.6mg/kg/day) starting at post-natal day 23 (pre-adolescent), p38 (late adolescent), or p54 (adult) for 12 days followed by a 30-day period during which they consumed either standard chow or chow supplemented with choline (9g/kg).

Our gene expression analyses support this model and point to two particular genes involved in chromatin remodeling, Smarca2 and Bahcc1. Both Smarca2 and Bahcc1 showed a similar inverse correlation pattern between promoter methylation and gene expression.

Our findings support a role for epigenetic modification of hippocampal chromatin remodeling genes in long-term learning deficits induced by adolescent nicotine and their amelioration by dietary choline supplementation.”


Let’s use the average weight of a US adult male – published by the US Centers for Disease Control as 88.8 kg – to compare the study’s dosages with human equivalents:

  1. Nicotine at “12.6mg/kg/day” x 88.8 kg = 1119 mg. The estimated lower limit of a lethal dose of nicotine has been reported as between 500 and 1000 mg!
  2. Choline at “9g/kg” x 88.8 kg = 799 g. The US National Institutes of Health published the Tolerable Upper Intake Levels for Choline as 3.5 g!!

Neither of these dosages are even remotely connected to human realities:

  1. The human-equivalent dosage of nicotine used in this study would probably kill an adult human before the end of 12 days.
  2. What effects would an adult human suffer from exceeding the choline “Tolerable Upper Intake Level” BY 228 TIMES for 30 days?

Isn’t the main purpose of animal studies to help humans? What’s the justification for performing animal studies simply to promote an agenda?


A funding source of this study was National Institute on Drug Abuse (NIDA) Identification of Biomarkers for Nicotine Addiction award (T-DA-1002 MG). Has the biomarker paradigm been institutionalized to the point where research proposals that don’t have biomarkers as goals aren’t funded?

https://www.sciencedirect.com/science/article/pii/S107474271830193X “Choline ameliorates adult learning deficits and reverses epigenetic modification of chromatin remodeling factors related to adolescent nicotine exposure” (not freely available)

How do memories transfer?

This 2018 Chinese study electronically modeled the brain’s circuits to evaluate memory transfer mechanisms:

“During non-rapid-eye-movement (NREM) sleep, thalamo-cortical spindles and hippocampal sharp wave-ripples have been implicated in declarative memory consolidation. Evidence suggests that long-term memory consolidation is coordinated by the generation of:

  • Hierarchically nested hippocampal ripples (100-250 Hz),
  • Thalamo-cortical spindles (7-15 Hz), and
  • Cortical slow oscillations (<1 Hz)

enabling memory transfer from the hippocampus to the cortex.

Consolidation has also been demonstrated in other brain tasks, such as:

  • In the acquisition of motor skills, where there is a shift from activity in prefrontal cortex to premotor, posterior parietal, and cerebellar structures; and
  • In the transfer of conscious to unconscious tasks, where activity in initial unskilled tasks and activity in skilled performance are located in different regions, the so-called ‘scaffolding-storage’ framework.

By separating a neural circuit into a feedforward chain of gating populations and a second chain coupled to the gating chain (graded chain), graded information (i.e. information encoded in firing rate amplitudes) may be faithfully propagated and processed as it flows through the circuit. The neural populations in the gating chain generate pulses, which push populations in the graded chain above threshold, thus allowing information to flow in the graded chain.

In this paper, we will describe how a set of previously learned synapses may in turn be copied to another module with a pulse-gated transmission paradigm that operates internally to the circuit and is independent of the learning process.”


The study had neither been peer-reviewed, nor were the mechanisms tested in living beings.

https://www.biorxiv.org/content/early/2018/07/27/351114 “A Mechanism for Synaptic Copy between Neural Circuits”

A mid-year selection of epigenetic topics

Here are the most popular of the 65 posts I’ve made so far in 2018, starting from the earliest:

The pain societies instill into children

DNA methylation and childhood adversity

Epigenetic mechanisms of muscle memory

Sex-specific impacts of childhood trauma

Sleep and adult brain neurogenesis

This dietary supplement is better for depression symptoms than placebo

The epigenetic clock theory of aging

A flying human tethered to a monkey

Immune memory in the brain

The lack of oxygen’s epigenetic effects on a fetus

Addictive behavior and epigenetic DNA methylation

This 2018 McGill paper reviewed findings from animal and human studies on the relationships between drug-seeking behavior and epigenetic DNA methylation:

“Although there is an increasing line of evidence from preclinical models of addiction, there are only a few human studies that systematically assessed DNA methylation in addiction. Most of the studies were done on small cohorts and focused on one or a few candidate genes, except in the case of alcohol use where larger studies have been carried out.

A long line of evidence suggests that abnormal patterns of gene expression occur in brain regions related to drug addiction such as the nucleus accumbens, prefrontal cortex, amygdala, and the ventral tegmental area.

Using the “incubation of craving” model in rats trained to self-administer cocaine, and treated with either SAM or RG108, the genome-wide DNA methylation and gene expression landscape in the nucleus accumbens after short (1 day) and long (30 days) abstinence periods and the effects of epigenetic treatments were delineated. The main findings are:

  • A long incubation period results in robust changes in methylation;
  • Direct accumbal infusion of SAM that is paired with a “cue” after long incubation times increases drug-seeking behavior,
  • Whereas a single treatment with RG108 decreases this behavior.

Importantly, the effects of these single administrations of a DNA methylation inhibitor remain stable for 30 more days. These data suggest that DNA methylation might be mediating the impact of “incubation” on the craving phenotype and that this phenotype could be reprogrammed by a DNA demethylation agent.”


The subject has a large scope, and a narrow aspect was presented in this paper. Rodent research by one of the coauthors that was cited, Chronic pain causes epigenetic changes in the brain and immune system, provided some relevant details.

The review covered neither human dimensions of the impacts of unfulfilled needs nor investigations of exactly what pain may impel human drug-seeking behavior. The “Implications for Diagnostic and Therapeutics” were largely at the molecular level.

https://www.sciencedirect.com/science/article/pii/S1877117318300164 “The Role of DNA Methylation in Drug Addiction: Implications for Diagnostic and Therapeutics” (not freely available)

Melatonin and depression

This 2018 Polish review subject was the relationship between melatonin and depression:

“Although melatonin has been known about and referred to for almost 50 years, the relationship between melatonin and depression is still not clear. In this review, we summarize current knowledge about the genetic and epigenetic regulation of enzymes involved in melatonin synthesis and metabolism as potential features of depression pathophysiology and treatment.

Melatonin has an antidepressant effect by:

  • Maintaining the body’s circadian rhythm,
  • Regulating the pattern of expression of the clock genes in the suprachiasmatic nucleus (SCN) and
  • Modifying the key genes of serotoninergic neurotransmission that are linked with a depressive mood.

Light input causes the release of γ-aminobutyric acid (GABA) by the SCN, and the inhibitory signal is transmitted to the pineal gland to inhibit melatonin production.

Melatonin is produced via the metabolism of serotonin in two steps which are catalyzed by serotonin N-acetyltransferase (SNAT) and acetylserotonin-O-methyltransferase (ASMT). Serotonin, SNAT, and ASMT are key melatonin level regulation factors.

Both melatonin and serotonin are synthesized from the same amino acid, tryptophan. People on a high tryptophan diet (>10 mg/kg body weight per day) have a significantly lower level of depressive symptoms, irritation, and anxiety than people on a low tryptophan diet (<5 mg/kg body weight per day).

To our knowledge, there are only 2 studies in the literature that characterize mRNA expression of ASMT in the peripheral blood of recurrent DD [depressive disorders]. [They] have demonstrated the reduced mRNA expression of ASMT in patients with depression and cognitive impairment. Surprisingly, these studies, despite promising results, have not been replicated. Moreover, no analysis of other melatonin related-genes as potential biomarkers of depression has been provided.

The main monoamine hypothesis of the pathophysiology of depression indicates that depression is induced by a change in the level of ≥1 monoamines such as serotonin, noradrenaline, and dopamine. The evidence for the serotonergic theory is an observation that antidepressants such as tricyclic antidepressants, selective serotonin reuptake inhibitors, and noradrenaline reuptake inhibitors increase the level of serotonin in the brain.

We focus on serotonin as a neurotransmitter which is a precursor of melatonin synthesis. In a depressed patient, serotonin synthesis is impaired and the poor precursor availability may prevent the formation of an adequate amount of melatonin. However, only a few studies have analyzed the relationship between serotonin and melatonin levels and the correlation with the blood serum.”


At eight cents a day ($.04 for women) melatonin is a cheap and effective supplement.

I hadn’t considered possible antidepressant effects until reading this review. More human studies are needed.

https://www.karger.com/Article/Pdf/489470 “Pathophysiology of Depression: Molecular Regulation of Melatonin Homeostasis – Current Status” (not freely available)