On Primal Therapy with Drs. Art and France Janov

Experiential feeling therapy addressing the pain of the lack of love.

Genetic imprinting, sleep, and parent-offspring conflict

This 2016 Italian review subject was the interplay of genetic imprinting and sleep regulation:

“Sleep results from the synergism between at least two major processes: a homeostatic regulatory mechanism that depends on the accumulation of the sleep drive during wakefulness, and a circadian self-sustained mechanism that sets the time for sleeping and waking throughout the 24-hour daily cycle.

REM sleep apparently contravenes the restorative aspects of sleep; however, the function of this ‘paradoxical’ state remains unknown. Although REM sleep may serve important functions, a lack of REM sleep has no major consequences for survival in humans; however, severe detrimental effects have been observed in rats.

Opposite imprinting defects at chromosome 15q11–13 are responsible for opposite sleep phenotypes as well as opposite neurodevelopmental abnormalities, namely the Prader-Willi syndrome (PWS) and the Angelman syndrome (AS). Whilst the PWS is due to loss of paternal expression of alleles, the AS is due to loss of maternal expression.

Maternal additions or paternal deletions of alleles at chromosome 15q11–13 are characterized by temperature control abnormalities, excessive sleepiness, and specific sleep architecture changes, particularly REM sleep deficits. Conversely, paternal additions or maternal deletions at chromosome 15q11–13 are characterized by reductions in sleep and frequent and prolonged night wakings.

The ‘genomic imprinting hypothesis of sleep’ remains in its infancy, and several aspects require attention and further investigation.”

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006004 “Genomic Imprinting: A New Epigenetic Perspective of Sleep Regulation”

A commenter to the review referenced a 2014 study Troubled sleep: night waking, breastfeeding, and parent–offspring conflict that received several reactions, including one by the same commenter. Here are a few quotes from the study author’s consolidated response:

“‘Troubled sleep’ had two major purposes. The first was to draw attention to the oppositely perturbed sleep of infants with PWS and AS and explore its evolutionary implications. The involvement of imprinted genes suggests that infant sleep has been subject to antagonistic selection on genes of maternal and paternal origin with genes of maternal origin favoring less disrupted sleep.

My second major purpose was a critique of the idea that children would be happier, healthier and better-adjusted if we could only return to natural methods of child care. This way of thinking is often accompanied by a belief that modern practices put children at risk of irrevocable harm.

The truth of such claims is ultimately an empirical question, but the claims are sometimes presented as if they had the imprimatur of evolutionary biology. This appeal to scientific authority often seems to misrepresent what evolutionary theory predicts: that which evolves is not necessarily that which is healthy.

Why should pregnancy not be more efficient and more robust than other physiological systems, rather than less? Crucial checks, balances and feedback controls are lacking in the shared physiology of the maternal–fetal unit.

Infant sleep may similarly lack the exquisite organization of systems without evolutionary conflict. Postnatal development, like prenatal development, is subject to difficulties of evolutionarily credible communication between mothers and offspring.”

The author addressed comments related to attachment theory:

“Infants are classified as having insecure-resistant attachment if they maintain close proximity to their mother after a brief separation while expressing negative emotions and exhibiting contradictory behaviors that seem to both encourage and resist interaction. By contrast, infants are classified as having insecure-avoidant attachment if they do not express negative emotion and avoid contact with their mother after reunion.

Insecure-avoidant and insecure-resistant behaviors might be considered antithetic accommodations of infants to less responsive mothers; the former associated with reduced demands on maternal attention, the latter with increased demands. A parallel pattern is seen in effects on maternal sleep. Insecure-avoidant infants wake their mothers less frequently, and insecure-resistant infants more frequently, than securely attached infants.

Parent–child interactions are transformed once children can speak. Infants with more fragmented sleep at 6 months had less language at 18 and 30 months.

Infants with AS have unconsolidated sleep and never learn to speak. The absence of language in the absence of expression of one or more MEGs [maternally expressed imprinted genes] is compatible with a hypothesis in which earlier development of language reduces infant demands on mothers.”

Regarding cultural differences:

“China, Taiwan and Hong Kong have both high rates of bed-sharing and high rates of problematic sleep compared with western countries. Within this grouping, however, more children sleep in their own room but parents report fewer sleep problems in Hong Kong than in either China or Taiwan.

Clearly, cultural differences are significant, and the causes of this variation should be investigated, but the differences cannot be summarized simply as ‘west is worst’.

The fitness [genetic rather than physical fitness] gain to mothers of an extra child and the benefits for infants of longer IBIs [interbirth intervals] are substantial. These selective forces are unlikely to be orders of magnitude weaker than the advantages of lactase persistence, yet the selective forces associated with dairying have been sufficient to result in adaptive genetic differentiation among populations.

The possibility of gene–culture coevolution should not be discounted for behaviors associated with infant-care practices.”

Regarding a mismatch between modern and ancestral environments:

“I remain skeptical of a tendency to ascribe most modern woes to incongruence between our evolved nature and western cultural practices. We did not evolve to be happy or healthy but to leave genetic descendants, and an undue emphasis on mismatch risks conflating health and fitness.

McKenna [a commenter] writes ‘It isn’t really nice nor maybe even possible to fool mother nature.’ Here I disagree. Our genetic adaptations often try to fool us into doing things that enhance fitness at costs to our happiness.

Our genes do not care about us and we should have no compunction about fooling them to deliver benefits without serving their ends. Contraception, to take one obvious example, allows those who choose childlessness to enjoy the pleasures of sexual activity without the fitness-enhancing risk of conception.

Night waking evolved in environments in which there were strong fitness costs from short IBIs and in which parents lacked artificial means of birth-spacing. If night waking evolved because it prolonged IBIs, then it may no longer serve the ends for which it evolved.

Nevertheless, optimal infant development might continue to depend on frequent night feeds as part of our ingrained evolutionary heritage.

It could also be argued that when night waking is not reinforced by feeding, and infants sleep through the night, then conflict within their genomes subsides. Infants would then gain the benefit of unfragmented sleep without the pleiotropic costs of intragenomic conflict. Plausible arguments could be presented for either hypothesis and a choice between them must await discriminating evidence.”

Commenters on the 2014 study also said:

[Crespi] The profound implications of Haig’s insights into the roles of evolutionary conflicts in fetal, infant and maternal health are matched only by the remarkable absence of understanding, appreciation or application of such evolutionary principles among the research and clinical medical communities, or the general public.

[Wilkins] A mutation may be selected for its effect on the trait that is the basis of the conflict, but that mutation also likely affects other traits. In general, we expect that these pleiotropic effects to be deleterious: conflict over one trait can actually drive other traits to be less adapted. Natural selection does not necessarily guarantee positive health outcomes.

[McNamara] Assuming that AS/REM is differentially influenced by genes of paternal origin then both REM properties and REM-associated awakenings can be better explained by mechanisms of genomic conflict than by traditional claims that REM functions as an anti-predator ‘sentinel’ for the sleeping organism.

[Hinde] Given this context of simultaneous coordination and conflict between mother and infant, distinguishing honest signals of infant need from self-interested, care-extracting signals poses a challenge.

Advance science by including emotion in research

This 2015 analysis of emotion studies found:

“Emotion categories [fear, anger, disgust, sadness, and happiness] are not contained within any one region or system, but are represented as configurations across multiple brain networks.

For example, among other systems, information diagnostic of emotion category was found in both large, multi-functional cortical networks and in the thalamus, a small region composed of functionally dedicated sub-nuclei.

The dataset consists of activation foci from 397 fMRI and PET [positron emission tomography] studies of emotion published between 1990 and 2011.”

From the fascinating Limitations section:

“Our analyses reflect the composition of the studies available in the literature, and are subject to testing and reporting biases on the part of authors. This is particularly true for the amygdala (e.g., the activation intensity for negative emotions may be over-represented in the amygdala given the theoretical focus on fear and related negative states). Other interesting distinctions were encoded in the thalamus and cerebellum, which have not received the theoretical attention that the amygdala has and are likely to be bias-free.

Some regions—particularly the brainstem—are likely to be much more important for understanding and diagnosing emotion than is apparent in our findings, because neuroimaging methods are only now beginning to focus on the brainstem with sufficient spatial resolution and artifact-suppression techniques.

We should not be too quick to dismiss findings in ‘sensory processing’ areas, etc., as methodological artifacts. Emotional responses may be inherently linked to changes in sensory and motor cortical processes that contribute to the emotional response.

The results we present here provide a co-activation based view of emotion representation. Much of the information processing in the brain that creates co-activation may not relate to direct neural connectivity at all, but rather to diffuse modulatory actions (e.g., dopamine and neuropeptide release, much of which is extrasynaptic and results in volume transmission). Thus, the present results do not imply direct neural connectivity, and may be related to diffuse neuromodulatory actions as well as direct neural communication.”

Why did the researchers use only 397 fMRI and PET studies? Why weren’t there tens or hundreds of times more candidate studies from which to select?

The relative paucity of candidate emotion studies demonstrated the prevalence of other researchers’ biases for cortical brain areas. The lead researcher of the current study was a coauthor of the 2016 Empathy, value, pain, control: Psychological functions of the human striatum, whose researchers mentioned that even their analyses of 5,809 human imaging studies was hampered by other imaging-studies researchers’ cortical biases.

Functional MRI signals depend on the changes in blood flow that follow changes in brain activity. Study designers intentionally limit their findings when they scan brain areas and circuits that are possibly activated by human emotions, yet exclude emotional content that may activate these areas and circuits.

Here are a few examples of limited designs that led to limited findings when there was the potential for so much more:

It’s well past time to change these practices now in the current year.

This study provided many methodological tests that should be helpful for research that includes emotion. It showed that there aren’t impenetrable barriers – other than popular memes, beliefs, and ingrained dogmas – to including emotional content in studies.

Including emotional content may often be appropriate and informative, with the resultant findings advancing science. Here are a few recent studies that did so:

http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1004066 “A Bayesian Model of Category-Specific Emotional Brain Responses”

Reflections on my four-year anniversary of spine surgery

At age 55, I found out that I’d suffered for maybe 45 to 50 years from a childhood injury, and I didn’t know anything about it. It still seems unbelievable to me that I was physically ill for decades before I received a diagnosis.

As explained to me by two surgeons, the cause of my spondylolisthesis between L5 and S1 was a sudden injury sometime between ages 5 and 10. Here’s a further explanation:

“In children, spondylolisthesis usually occurs between the fifth bone in the lower back (lumbar vertebra) and the first bone in the sacrum (pelvis) area. It is often due to a birth defect in that area of the spine or sudden injury (acute trauma).

Other causes of spondylolisthesis include bone diseases, traumatic fractures, and stress fractures (commonly seen in gymnasts). Certain sport activities, such as gymnastics, weight lifting, and football, put a great deal of stress on the bones in the lower back. They also require that the athlete constantly overstretch (hyperextend) the spine.”

I played a lot of baseball when I was a kid growing up in Miami. I didn’t suffer from a birth defect or bone disease, play football before I was a teenager, do gymnastics, or lift weights.

I don’t remember a specific “sudden injury (acute trauma)” per the above explanation. Maybe I incurred the acute trauma that started my spondylolisthesis sliding into bases playing baseball. Maybe I incurred it playing in the other rough-and-tumble activities that I did as a boy.

Please stop at the first hint of any pain that you feel while reading the rest of this post. I don’t want to cause you pain.

I re-experienced while in Primal Therapy a day when I was seven or eight years old. A most exhilarating day, one that filled me with light and joy.

What brought on my elevated mood? It was the day I finally ran faster than my father did, and he couldn’t catch me to give me a beating as I ran out of the house.

My father never beat me on the sidewalk, the street, or the front yard anyway. That would make the abuse public.

My father’s job was assistant principal/dean of boys at West Miami Junior High School. He whipped boys with a thick belt or paddled them daily as part of his job requirements.

My father kept a wooden paddle with holes in it at home. For me.

I don’t remember that my three siblings ever received a paddling or belting, although they were spanked. I’ve remembered while in Primal Therapy that my younger sister and brother were spanked for crying.

I re-experienced the dread of waiting (in an exact place with visual details), waiting for my father to come home to administer a spanking or belting or paddling to me for some “transgression” my mother observed. She had dozens of rules of conduct for her children.

I re-experienced my early childhood feelings that my father’s punishments depended more on my mother’s mood than on what I did.

I re-experienced my early childhood feelings that I didn’t deserve the beatings. I didn’t deserve any beatings, not one!

My father continued, though, until I was around age 11 or so. I’m sure that the beatings were a factor in how I felt at age 12:

Suicidal. Needing to escape from my life.

When I was a child, I needed my parents’ love.

I re-experienced many times while in Primal Therapy the overwhelming hopelessness, helplessness, worthlessness, and betrayal when the people I needed to love me were cruel to me instead.

My parents knew what they did was wrong. Neither one of them ever told me that, though.

My father never apologized for beating me so much before he died 19 years ago. Even before he retired, 17 years before he died, the Miami-Dade County public school system stopped him and the rest of their employees from spanking, whipping, beating, and paddling children.

What could he even tell me to take away those experiences?

  • That he beat me as a child because he himself was beaten as a child?
  • That he couldn’t help it?
  • That how he and my mother frequently went out of their way to help me along in life after my childhood somehow made up for the beatings?

I’m certain that my father was beaten as a child. I bring this up not as a defense for what he did, but as part of my history, too.

It wasn’t enough for my father’s mother to beat me while she was babysitting my siblings and me at our parents’ house. I re-experienced crying as a five-year old when I was required to go cut off palm fronds from the tree in front of our house for her to use as a switch, and bring them to her.

It was a mark of my grandmother’s cruelty that she threatened to beat me with a broom handle when I tried to not participate in my own torment. I re-experienced exact places of my legs where she switched me with the palm fronds, giving me even more when I cried during the punishment.

These wounds left scars that haven’t gone away.

Run your hand down your spine until you reach the top of your sacrum. That’s the area on which I had surgery four years ago, where I now have a titanium cage, replacement disc, and two rods to keep the area stable.

I received a lot of beatings pretty close to that area. Maybe my boyhood activities didn’t cause the “sudden injury (acute trauma).”

I write frankly about my parents because that’s my history: the realities of who they were.

And the realities of who I needed them to be.

I express it because getting well has to address reality.

From Dr. Arthur Janov’s book, Primal Healing, page 133:

“Another cognitive technique is to help the patient understand and forgive his parents. ‘After all, your parents did the best they could. They had a pretty tough childhood too.’ ‘Oh yes, I understand. They did have it tough and I do forgive’ comes forth from the left side. Still, of course, the right side is crying out its needs and its pain, and will go on with its silent scream for the rest of our lives.

There is no way around need.

‘Forgiveness’ is an idea that has no place in therapy.

We are not here to pardon parents; we are here to address the needs of patients, and what the lack of fulfillment did to them.

I regret to say that much of current therapy and particularly cognitive therapy is about a moral position; well hidden, couched in psychological jargon, but, at bottom, moralizing. The therapist becomes the arbiter of correct behavior.

After all, the therapist is trying to change the patient’s behavior toward some preconceived goal. That goal has a sequestered moral position.”

Who benefits when research promotes a meme of self-sacrifice?

The main purpose of this 2014 Illinois human study was to make findings directed toward high school students that:

“Well-being may depend on attending to higher values related to family, culture, and morality, rather than to immediate, selfish pleasure.”

The study’s messages to young people and to those who control young people were:

  • You have to give up trying to live your own life if you want to be happy.
  • For your own “well-being” just follow the “higher values” where other people tell you what to do and think.
  • Other people know how you should live your life better than you do. Science says so.

The researchers embedded many assertions into the study, most of which weren’t supported by the study’s data. The researchers’ main assertion was:

“Optimal well-being may be achieved through eudaimonic activities.”

The researchers repeated this assertion multiple times in multiple ways, such as citing philosophy and other research. The short version of the term “eudaimonic” was defined as: “Meaning and purpose, a life well-lived.”

The study’s ONLY measurement of “eudaimonic” activities was the subjects’

“Neural activation when making a donation to the family that involves self-sacrifice.”

The study’s main finding involving this SOLE measurement was:

“Eudaimonic decisions predicted longitudinal declines in depressive symptoms.”

Depressive symptoms were determined by “a self-report measure” where the subjects, 47 adolescents aged 15-17:

  • “Completed the internalizing symptoms subscale of the Youth Self-Report form of the Child Behavior Checklist
  • Underwent a brain scan during which they completed a family donation task and a risk-taking task.”

39 of the subjects returned one year later to reanswer the checklist.

I wonder what bases the reviewer used to approve the researchers’ methods.

1. In the study’s verbiage the researchers extrapolated the significance of the sole measurement of eudaimonic activities – the initial fMRI scan – many times past what it actually measured. One-time measurements of the blood flow in the ventral striatum of a few Los Angeles teenagers can’t validly be assigned as the bases for all of what the researchers went on and on about to glorify “prosocial eudaimonic decisions.”

2. No method checked the subjects’ personal impact of the experiments’ monetary rewards and donations. The subjects didn’t scale their personal relative importance of the monetary rewards and donations.

Consider the relative importance of a dime for a kid whose parents gave them a BMW to drive to high school. Compare that with a kid who searched the sidewalk for dropped coins as they walked to high school.

Absent subjective scaling, the monetary rewards and donations data couldn’t be used as the basis to produce informative results.

3. The balloon test used in this study to measure “risky hedonic decisions” was the same as in the Who benefits when research with no practical application becomes a politically correct meme? study. The same objection applies here: a video game task of popping balloons that engages the cerebrum was NOT informative to the cause-and-effect of the emotions and instincts and impulses from limbic system and lower brain areas that predominantly drive risky behavior.

Scientific justification for memes like the self-sacrifice promoted by this study helps rush people past what really happened in their lives. A popular cultural meme is to “live in the present” and purposefully overlook how we arrived at our present lives.

I wonder how we would evaluate the “higher values related to family, culture, and morality” if we felt and honestly understood our real history.

Do you feel that young people benefit when they sacrifice their lives in the name of “family, culture, and morality?” Who benefits when people don’t pause to reflect on how their history impacts what’s going on now with their lives?

http://www.pnas.org/content/111/18/6600.full “Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time”

Is IQ an adequate measure of the quality of a young man’s life?

This 2015 Virginia study used Swedish data to find:

“Adoption into improved socioeconomic circumstances is associated with a significant advantage in IQ.”

The study’s all-male subjects were in 436 sibling relationships:

“..in which at least one member was reared by one or more biological parents and the other by adoptive parents. IQ was measured at age 18–20 as part of the Swedish military service conscription examination.”

One of the researchers said:

“Environmental effects have to be inferred, as in the rare event when pairs of siblings are raised by different parents in different socioeconomic circumstances. The Swedish population data allowed us to find that homes led by better educated parents produce real gains in the cognitive abilities of the children they raise.”

Let’s approach this study from the adopted boys’ perspectives. Their biological families’ situations had to be hellishly tragic in order to separate siblings and put one of them up for adoption. I didn’t find at what age the separations typically took place, but can you imagine what the adopted child felt?

A child is very sensitive to his caregivers’ words, body language, facial expressions, physical touches – to all the things that show him he’s loved. A child learns at an early age from both implicit and overt expressions whether or not he’s accepted for who he is.

It’s extremely traumatic for a child to be rejected for who he is. Consider this passage from Dr. Arthur Janov’s book The Primal Scream:

“Parental need becomes the child’s implicit command.

The child is born into his parents’ needs and begins struggling to fulfill them almost from the moment he is alive.

He may be pushed to smile (to appear happy), to coo, to wave bye-bye, later to sit up and walk, still later to push himself so that his parents can have an advanced child.

As the child develops, the requirements upon him become more complex.

He will have to get A’s, to be helpful and do his chores, to be quiet and undemanding, not to talk too much, to say bright things, to be athletic.

What he will not do is be himself.”

All of the above can happen within a stable family. Can you imagine what a child in an unstable family felt as he learned he wasn’t accepted, and how he tried to adapt?

Everything these adopted children did to be accepted by their original caregivers failed. They were rejected by and ejected from the people who were supposed to love them!

Can you imagine how desperate these adopted children would have been in their new environment?

What wouldn’t they have done to be accepted?

The researchers made a point of cognitive development. But of all of the things that were important to the adopted child, that described his quality of life, does the finding of a higher IQ give even the slightest hint of his reality?

http://www.pnas.org/content/112/15/4612.full “Family environment and the malleability of cognitive ability: A Swedish national home-reared and adopted-away cosibling control study”

Research on brain areas involved when we imagine people, places, and pleasantness

This highly jargoned 2014 Harvard study was on how people imagine that they’ll feel in the future.

One of the researchers was an author of:

I was surprised that this study also didn’t ignore the limbic system to the point to where the researchers wouldn’t even bother to measure important areas.

Limbic system areas that process people were different than those that process places. For example, the data in Table S4 showed that the subjects’ left amygdala and hippocampus were more activated when simulating future familiar people, whereas their right hippocampus was more activated when simulating future familiar places.

The researchers may have improved the study’s findings if they were informed by studies such as the Hippocampus replays memories and preplays to extend memories into future scenarios, which found that “place” cells in the CA1 segment of the hippocampus preplay events that imagine future scenarios of:

“Novel spatial experiences of similar distinctiveness and complexity.”

Such information may have helped to disambiguate one of the study’s findings in Table S5, that both sides of the subjects’ hippocampus were more activated than other brain regions when simulating both familiar people and places.

The researchers got a little carried away in broadly attributing most of the study’s findings to the ventromedial prefrontal cortex. For example, the data in Table S6 showed that the thalamus was more activated when the subjects anticipated positive pleasantness, but not when negative effects were anticipated.

We know from Thalamus gating and control of the limbic system and cerebrum is a form of memory that this is normally how the thalamus part of the limbic system actively controls and gates information to and from the cerebrum. Their data showed thalamic gating in operation:

  • Active when passing along pleasantness to cerebral areas, and
  • Passive when blocking unpleasantness from cerebral areas.

Also, I didn’t see how the researchers differentiated some of their findings from a placebo effect. For example, Using expectations of oxytocin to induce positive placebo effects of touching is a cerebral exercise found:

“Pain reduction dampened sensory processing in the brain, whereas increased touch pleasantness increased sensory processing.”

This was very similar to the above finding involving the thalamus.

http://www.pnas.org/content/111/46/16550.full “Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge”

One way that an infant unconsciously knows the emotions of the humans in their environment

This 2014 human study found one way that an infant unconsciously recognized the emotions of the humans in their environment:

“The current study provides neural evidence for the unconscious detection of emotion and gaze cues from the sclera in 7-mo-old infants.

Wide-open eyes, exposing a lot of white, indicate fear or surprise. A thinner slit of exposed eye, such as when smiling, expresses happiness or joy.”

The basis for finding that the subjects’ responses were unconscious was that the researchers determined that displaying images of eyes for 50 milliseconds fell below the threshold of infants’ conscious awareness.

http://www.pnas.org/content/111/45/16208.full “Unconscious discrimination of social cues from eye whites in infants”

Using expectations of oxytocin to induce positive placebo effects of touching

This 2013 Scandinavian study detailed which brain structures were involved when fooling oneself about actual sensations in favor of expected sensations.

It was hilarious how the researchers used studies of oxytocin to create expectations in the subjects:

“To induce expectation of intranasal oxytocin’s beneficial effects on painful and pleasant touch experience, participants viewed a 6-min locally developed video documentary about oxytocin’s putative prosocial effects such as involvement in bonding, love, grooming, affective touch, and healing. As all of the material was based on published research, there was no deception. The video concluded that a nasal spray of oxytocin might enhance the pleasantness of:

  • (i) stroking and
  • (ii) warm touch, and
  • (iii) reduce the unpleasantness of pain.”

Other items:

  • Only the placebo effects for the warm and pain-reducing touches were statistically significant, not the stroking touch;
  • The a priori brain areas monitored in the “sensory circuitry” included the thalamus and were all in the right brain hemisphere;
  • The a priori brain areas monitored in the “emotional appraisal circuitry” included the amygdala.

One way the researchers summarized the study was:

“Pain reduction dampened sensory processing in the brain, whereas increased touch pleasantness increased sensory processing.”

This finding demonstrated how the thalamus part of the limbic system actively controls and gates information to and from the cerebrum, similar to the Thalamus gating and control of the limbic system and cerebrum is a form of memory study.

There was a terminology problem in the study, evidenced by statements such as:

“We induced placebo improvement of both negative and positive feelings (painful and pleasant touch).”

Touch is a sensation, not a feeling or emotion. This placebo study created expectations of sensations in the subjects’ cerebrums, not expectations of emotions.

Also, including parts of the limbic system such as the amygdala in the “emotional appraisal circuitry” didn’t mean that the researchers studied feelings or emotions. We know from research summarized in the Conscious mental states should not be the first-choice explanation of behavior study that:

“Neither amygdala activity nor amygdala-controlled responses are telltale signatures of fearful feelings.

The current study cast additional light on the dubious Problematic research on human happiness study. Those researchers were fooled by a positive placebo effect!

http://www.pnas.org/content/110/44/17993.full “Placebo improves pleasure and pain through opposite modulation of sensory processing”

Task performance and beliefs about task responses are solely cerebral exercises

This 2013 human study provided details of which areas of the cerebrum participated in objective performance of a task vs. the subjects’ subjective confidence in their task responses:

“These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states.”

The subjects’ limbic systems were monitored during the fMRI and subsequent reporting, but the subjects’ limbic system areas weren’t activated during any of the experiments.

The study thereby demonstrated that both task participation and subjective beliefs about the tasks were only cerebral exercises.

These findings should inform studies such as:

to neither characterize subjects’ task responses as “positive feelings” nor to ascribe emotions such as happiness to the subjects’ cerebral exercises.

http://www.pnas.org/content/110/28/11577.full “Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs”