Eat broccoli sprouts for depression, Part 3

Here are two papers published after Part 2 that cited the Part 1 rodent study, starting with a 2023 rodent study performed by several Part 1 coauthors:

“We used a low-dose LPS-induced endotoxaemia model to mimic clinical characteristics of sepsis. We found that adolescent LPS treatment was sufficient to increase levels of inflammatory factor TNF-α in both the medial prefrontal cortex (mPFC) and hippocampus at post-natal day P22.

P21 LPS-treated mice were injected with sulforaphane (SFN) or saline intraperitoneally at P49 and then subjected to subthreshold social defeat stress (SSDS). We found that SFN preventative treatment significantly:

  • Decreased the social avoidance, anhedonia, and behavioural despair detected by the social interaction test, sucrose preference test, tail suspension test, and forced swim test, respectively.
  • Decreased anxiety-like behaviours without affecting locomotor activities.
  • Increased Nrf2 and brain-derived neurotrophic factor (BDNF) levels in the mPFC of P21 LPS-treated mice after SSDS compared with saline control mice.

The above results suggest that activation of the Nrf2-BDNF signalling pathway prevents the effect of adolescent LPS-induced endotoxaemia on stress vulnerability during adulthood.

sulforaphane and stress vulnerability

These results suggest that early adolescence is a critical period during which inflammation can promote stress vulnerability during adulthood. This might be due to increased inflammatory response in the mPFC, and mediated by decreased levels of Nrf2 and BDNF. These findings may shed light on the potential use of SFN as an alternative preventative intervention for inflammation-induced stress vulnerability.”

https://link.springer.com/article/10.1007/s00213-022-06285-4 “Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex” (not freely available)

This study demonstrated that adolescent diseases and stresses don’t necessarily develop into adult social problems. A timely intervention may even prevent future adult problems.

The one-time 10 mg/kg sulforaphane dose was the same as Part 1’s dose, a human equivalent of which is (10 mg x .081) x 70 kg = 57 mg.

I’d like to know more about how subjects’ memories of adverse events were retained, and subsequently affected their biology and behavior. Pretty sure limbic structures like the hypothalamus as well as lower brain structures played a part.


A 2022 review summarized what was known up to that time regarding Nrf2 and depression:

“Sulforaphane, an organosulfur compound isolated from Brassicaceae plants, is a potent natural NRF2 activator. Sulforaphane:

  • Exerts antidepressant- and anxiolytic-like activities and inhibits HPA axis and inflammatory response.
  • Has both therapeutic and prophylactic effects on inflammation-related depression.
  • Confers stress resilience.
  • Protects neurons via autophagy and promotes mitochondrial biogenesis by activating Nrf2.”

https://www.sciencedirect.com/science/article/pii/S2213231722002944 “Nrf2: An all-rounder in depression”


PXL_20230306_202857493

Oat β-glucan effects

Three papers on oat β-glucan’s effects in humans, starting with a 2023 study that compared different doses:

“Two randomized, double-blind, controlled studies were conducted with asymptomatic subjects between 20 and 40 years of age, male or female, normal weight or overweight.

In the first study – a crossover trial comprising two days of testing (β-glucan and control) separated by at least one week – 14 subjects ingested a breakfast with or without β-glucan from oats (5.2 g). Results indicate that acute intake of 5 g β-glucan slows transit time and decreases hunger sensation and postprandial glycaemia without affecting bile-acid synthesis. These changes were associated with decreased plasma insulin, C-peptide, and ghrelin, and increased plasma gastric inhibitory polypeptide  and pancreatic polypeptide.

In the second study, 32 subjects were distributed into 2 groups to ingest daily foods with (3 g/day) or without β-glucan for 3 weeks. Results indicate a regular daily intake of 3 g β-glucan is not sufficient to have an effect on fecal microbiota composition, suggesting that health-promoting effects at 3 g/d are probably due more to their physiological effect in the proximal part of the gastrointestinal tract than to their prebiotic effect in the colon.”

https://www.mdpi.com/2304-8158/12/4/700 “Modulation of Postprandial Plasma Concentrations of Digestive Hormones and Gut Microbiota by Foods Containing Oat ß-Glucans in Healthy Volunteers”


I’ll use a 2021 study Rapid Determination of β-Glucan Content of Hulled and Naked Oats Using near Infrared Spectroscopy Combined with Chemometrics to estimate my daily β-glucan intake. Those researchers tested 100 varieties of Avena nuda that varied between 3.12% and 5.22% β-glucan. My intake from 82 g (dry weight) of hulless oats (cinnamon sprinkled for taste) is probably between (82 g x .0312) = 3 g and (82 g x .0522) = 4 g.

They also tested 79 varieties of hulled Avena sativa that varied between 3.1% and 5.5% β-glucan. Oat sprouts analysis tested a Avena sativa variety where the β-glucan content decreased from 3.48% to 2.10% over four days of sprouting, a 40% reduction.

My daily β-glucan intake from 40 g (dry weight) of three-day-old hulled oat sprouts is probably 1 g [(40 g x .031) x .6 = 1 g and (40 g x .055) x .6 = 1 g]. That’s okay, because oat sprouts have other benefits per Oat sprouts analysis and Advantages of 3-day-old oat sprouts over oat grains.

My daily oat β-glucan intake is 4 – 5 grams. I’ve maintained that for two years, and don’t see any reason to stop.


A second 2023 paper from a clinical trial investigated effects of combining oat bran along with orange juice:

“Orange juice (OJ) is a rich dietary source of bioactive flavanones, and consuming OJ has been associated with beneficial effects including decreased inflammation and improved lipid profiles. However, dietary recommendations are to limit OJ consumption to one serving per day due to high sugar and low fiber content. Metabolic concerns are increased postprandial insulin response to a high sugar load which in individuals at risk may promote insulin resistance.

Consumption of 22 g oat bran containing 6 g of β-glucan together with 500 mL of OJ by healthy subjects impacts on OJ flavanone bioavailability with the 0-24 post-intake excretion of phase II metabolites, such as hesperetin-7-glucuronide, being reduced ~3-fold. This was not a consequence of bran affecting the rate of gastric transport, and underlying mechanisms behind reduced excretion of OJ flavanone metabolites remain a matter of conjecture.

The pool of bound phenolics in bran linked to polysaccharides appears not to be converted to free phenolics. It was rather principally a consequence of a bran-mediated increase in quantities of flavanones passing from the upper to the lower bowel where they were subjected to microbiota-mediated catabolism.”

https://www.sciencedirect.com/science/article/abs/pii/S0891584923000515 “Bioavailability of orange juice (poly)phenols: β-glucan-rich oat bran decreases urinary excretion of flavanone phase II metabolites and enhances excretion of microbiota-derived phenolic catabolites” (not freely available) Thanks to Dr. José Manuel Moreno-Rojas for providing a copy.

This paper referenced a preliminary study by many of the same coauthors that found oat bran with 3 g of β-glucan didn’t have similar effects.


A 2022 meta-analysis investigated differences between whole oats and purified β-glucan:

“This systematic review and meta-analysis evaluated the impact of oats or β-glucan supplements on the lipid profile. Our findings show that both oat and isolated β-glucan interventions can improve lipid profiles, specifically total cholesterol and low density lipoprotein cholesterol (LDL) concentrations, and should be incorporated into one’s regular eating habits.

Interventions ranged from 14 to 84 days in length. Quantity of β-glucan ingested (oats and isolated β-glucan) ranged from 1.2 g/day to 11.2 g/day.

Limitations and additional considerations include:

  • We did not have enough studies that matched total fiber intake between intervention and control groups, and so could not evaluate if results were exclusively influenced by oat/isolated β-glucan supplementation, or if other types of dietary fiber would have a similar impact on lipidemia.
  • Mechanisms of changes in concentrations of triglycerides (TG) are linked to carbohydrates. An increase in availability of glucose in serum, resulting from absorption of carbohydrates, stimulates secretion of insulin and, as a result, synthesis of fatty acids in the liver is increased. Mixed results found in this and other meta-analyses regarding TG may be related to the fact that oats and isolated β-glucan were frequently administered through day-to-day processed foods which have sugar and other types of refined flour in their recipes.
  • Different oat cooking procedures, processing methods, and molecular weights modify viscosity and impact in cholesterol concentrations differently. Less processed oats appear to be more effective than processed oat products in improving lipidemia. Higher molecular weight is associated with increased viscosity, and greater reduction in LDL. Also, the process used to treat oats affects its molecular weight, and the highest viscosities were observed as a consequence of dry processes in comparison to ones that exhibit enzymatic activity.
  • Reducing saturated fat intake may be, in combination with increased viscous fiber intake from oats or isolated β-glucan, the most effective way to improve dyslipidemia. In future studies, amount and type of fat in diet should be evaluated and considered accordingly.”

http://dx.doi.org/10.1016/j.clnesp.2022.12.019 “The separate effects of whole oats and isolated beta-glucan on lipid profile: A systematic review and meta-analysis of randomized controlled trials” (not freely available)


PXL_20230309_202539345

Sex hormones and epigenetic clocks

This 2023 human study investigated associations among sex hormones and epigenetic clocks:

“We studied associations between sex steroid hormones and DNA methylation-based (DNAm) biomarkers of age and mortality risk including Pheno Age Acceleration (AA), Grim AA, and DNAm-based estimators of Plasminogen Activator Inhibitor 1 (PAI1), and leptin concentrations.

Leptin is a peptide hormone and is associated with regulation of food intake and energy balance. Leptin also influences inflammatory processes, angiogenesis, lipolysis, and neuroplasticity.

PAI1 is a protein that is involved in tissue hemostasis. Previous studies that assessed associations between sex hormones and PAI1 protein concentrations in blood reported conflicting results.

DNAm PAI-1 was shown to be a better surrogate for lifespan than the actual plasma measure, and performs better than Grim AA regarding associations with the comorbidity-index. Another potential benefit of using DNAm-based biomarkers instead of plasma biomarkers is that the DNAm-based biomarkers represent a longer average estimate of biomarker concentration, and are not as affected by day-to-day variations that could bias results.

sex hormones and epigenetic clocks

Associations are represented by colored arrows with the lines’ thickness representing association strength. As the association was measured mainly cross-sectional, association directionality cannot be established.

  • Hormone levels were inversely associated with epigenetic estimators of mortality risk.
  • Sex Hormone Binding Globulin (SHBG) was associated with a decrease in DNAm PAI1 among men and women.
  • Higher testosterone and testosterone/estradiol ratio (TE) were associated with lower DNAm PAI and a younger epigenetic age in men.
  • A decrease in DNAm PAI1 is associated with lower mortality and morbidity risk indicating a potential protective effect of testosterone on lifespan and conceivably cardiovascular health via DNAm PAI1.

https://www.medrxiv.org/content/10.1101/2023.02.16.23285997v1.full “Higher testosterone and testosterone/estradiol ratio in men are associated with better epigenetic estimators of mortality risk”


Similar to a coauthor’s outstanding A rejuvenation therapy and sulforaphane where he was the lead author, this study may stay in preprint a while because it challenges current paradigms.

Remember that every truth passes through three stages before it’s recognized:

  1. It’s ridiculed; then
  2. It’s opposed; then
  3. It’s regarded as self-evident.

There may be a long lag between Stages 2 and 3 to memory-hole a fading paradigm’s damage. Don’t expect apologies, remediation, or restitution.

PXL_20230216_204431695

The goddess of destiny

A 2023 human study investigated exercise, klotho gene, and epigenetic clock relationships:

“Named after the spinner of the thread of life, klotho (KL) is involved in the aging process and may act as an anti-aging hormone in mammals. We hypothesize that circulating KL is correlated with age-associated methylation of the KL gene promoter region, and this is one reason for age-related decline in circulating KL.

202 subjects between ages 37 and 85 were included in the study. A great percentage of volunteers participated in the World Rowing Masters Regatta in Velence, Hungary. They were considered to be the trained group (TRND): n = 131; 80 males: age 59.14 ± 10.8; 51 females: age 57.24 ± 9.4. Results were compared to the sedentary group (SED): n = 71; 27 males: age 55.63 ± 13.4; 44 females: age 61.91 ± 10.5.

Circulating level of KL showed a negative correlation with chronological age in the TRND group, but not in the SED group.

klotho and exercise

Examining the relationship between circulating KL level and PhenoAge and GrimAge, KL is associated with PhenoAge acceleration in the TRND group only. It appears that higher KL can decelerate the DNA methylation-based aging process assessed by PhenoAge.

The present study revealed that circulating KL level is associated with exercise status level and general strength level, and is greatly dependent upon exercise-induced DNA methylation.”

https://www.mdpi.com/2073-4425/14/2/525 “The Circulating Level of Klotho Is Not Dependent upon Physical Fitness and Age-Associated Methylation Increases at the Promoter Region of the Klotho Gene”


PXL_20230216_200008595

Ancient parasite DNA within us

Two 2023 papers on endogenous retroviruses (ERVs) and aging relationships, starting with the Introduction section of a comprehensive study:

“Several causal determinants of aging-related molecular changes have been identified, such as epigenetic alterations and stimulation of senescence-associated secretory phenotype (SASP) factors. Although the majority of these studies describe aging determinants originating primarily from protein-coding genes, the non-coding part of the genome has started to garner attention as well.

ERVs belonging to long terminal repeat (LTR) retrotransposons are a relic of ancient retroviral infection, fixed in the genome during evolution, comprising about 8% of the human genome. As a result of evolutionary pressure, most human ERVs (HERVs) accumulate mutations and deletions that prevent their replication and transposition function. However, some evolutionarily young subfamilies of HERV proviruses, such as the recently integrated HERVK, maintain open reading frames encoding proteins required for viral particle formation.

In this study, using cross-species models and multiple techniques, we revealed an uncharacterized role of endogenous retrovirus resurrection as a biomarker and driver for aging. Specifically, we identified endogenous retrovirus expression associated with cellular and tissue aging and that the accumulation of HERVK retrovirus-like particles (RVLPs) mediates the aging-promoting effects in recipient cells. More importantly, we can inhibit endogenous retrovirus-mediated pro-senescence effects to alleviate cellular senescence and tissue degeneration in vivo, suggesting possibilities for developing therapeutic strategies to treat aging-related disorders.”

https://www.cell.com/cell/fulltext/S0092-8674(22)01530-6 “Resurrection of endogenous retroviruses during aging reinforces senescence”


This first paper’s foreword summarized their many experiments and findings:

“The study found that HERVK transcripts, viral proteins, and RVLPs were highly activated in prematurely aged human mesenchymal progenitor cells (hPMCs). This was similarly observed in aged human primary fibroblasts and hPMCs. They also discovered that decreasing silencing epigenetic marks DNA methylation and H3K9me3 while increasing H3K36me3 enabled HERVK expression.

erv aging mechanism

These observations also raise several intriguing questions:

  • HERVK is occasionally activated and eventually suppressed under physiological conditions, for example, in human embryonic cells. It would be fascinating to probe the possibility of mimicking physiological conditions in order to turn off the positive feedback between HERVK and senescence.
  • ERVs are hallmarks of aging in different species, including human, primate, and mouse. Future quantification of the absolute physiological level of ERVs across a broad population of various ages might provide further insights into the relationship between ERVs and organismal age.”

https://academic.oup.com/lifemedi/advance-article/doi/10.1093/lifemedi/lnad001/6982772 “Endogenous retroviruses make aging go viral”


Previously curated papers on these subjects include:

A study of our evolutionary remnants

“Repressive epigenetic marks associated with ERVs, particularly LTRs, show a remarkable switch in silencing mechanisms, depending on evolutionary age:

  • Young LTRs tend to be CpG-rich and are mainly suppressed by DNA methylation, whereas
  • Intermediate age LTRs are associated predominantly with histone modifications, particularly histone H3 lysine 9 (H3K9) methylation.
  • Evolutionarily old LTRs are more likely inactivated by accumulation of loss-of-function genetic mutations.”

Starving awakens ancient parasite DNA within us

Reality is sometimes stranger than what fiction writers dream up. 🙂

PXL_20230209_210243470

Improve your internal environment, improve its constituents’ functions

A third update to Signaling pathways and aging:

“Sima, who was born on 28 February 2019, has lived for 47 months, surpassing the 45.5 months believed to be the oldest age recorded in scientific literature for a female Sprague-Dawley rat, the researchers say. So far, Sima has outlived her closest rival in the study by nearly six months.

‘The real point of our experiments is not so much to extend lifespan, but to extend youthspan, to rejuvenate people, to make their golden years really potentially golden years, instead of years of pain and decrepitude,’ Katcher said. ‘But the fact is, if you manage to do that, you also manage to lengthen life, and that’s not a bad side-effect.'”

https://www.theguardian.com/science/2023/feb/08/anti-ageing-scientists-extend-lifespan-of-oldest-living-lab-rat “Anti-ageing scientists extend lifespan of oldest living lab rat”


Whale funeral

PXL_20230208_211431462

Environmental signaling rescues aging muscle stem cells

This 2023 rodent study applied An environmental signaling paradigm of aging concepts to muscle stem cells:

“The stem cell niche environment represents an important therapeutic target to enhance tissue regeneration in aging. We decoupled age-related cell-intrinsic effects, niche-mediated cell-extrinsic effects, and changes in population dynamics of muscle stem cells (MuSCs) and two key muscle-resident cells in young and aged mice.

in vivo model

We showed that:

  1. Age-related reduction in MuSCs is not stochastic.
  2. Despite differences in transcriptomes of MuSC clusters, the effect of age on gene expression is largely uniform, suggesting that the niche environment has a fundamental role in age-related changes in MuSC gene expression.
  3. A significant fraction of changes in the transcriptome of aging MuSCs can be reversed by exposure to the young muscle environment, i.e. are niche-responsive. Given the high percentage [46.6% at a stringent cutoff of s-value < 0.05] of reversibility in gene expression, our findings indicate that age-related changes in the niche are principal drivers of resulting alterations in the MuSC transcriptome.
  4. Aging is correlated with changes at the level of chromatin accessibility and DNA methylation in MuSCs.

Plasticity of the MuSC transcriptome suggests that modulating the niche environment can be a powerful tool to restore stem cell-mediated endogenous muscle regeneration in aging. Consequently, as opposed to focusing solely on MuSCs themselves to mitigate effects of aging on MuSCs, bioengineering of the niche in its entirety may be a viable therapeutic option.”

https://www.nature.com/articles/s41467-023-36265-x “Transcriptional reprogramming of skeletal muscle stem cells by the niche environment”


This study destroyed extremely well-funded directed research efforts that detract from science, especially those promoting irreversibility of epigenetic changes (but: Rockefeller) and randomness of pro-aging programming (but: Harvard).

These researchers showed they could do more with their ideas and careers than maintain an outdated and easily disproved status quo.

Blinded by their paradigm?

This 2022 human study investigated another type of aging clock:

“The glycan clock of age, based entirely on immunoglobulin G (IgG) N-glycans, can predict biological age with high accuracy. Unlike DNA methylation, glycosylation of IgG does not predict chronological age with high accuracy.

Heritability analysis of plasma glycans revealed that the majority of traits have high heritability estimates, indicating a tight genetic control of glycosylation. To better understand genetic and environmental factors influencing glycan clock variation, we performed a heritability analysis on data from two cohorts included in the TwinsUK registry.

Glycosylation is a series of enzymatic reactions in which carbohydrates are attached to other molecules (e.g., proteins or lipids) resulting in formation of complex carbohydrates and glycoconjugates commonly referred to as ‘glycans.’ Glycosylation of IgG antibody is especially interesting as it dramatically affects its function, and acts as a molecular switch between pro- and anti-inflammatory immune responses.

Heritability of the glycan clock was estimated to decompose observed phenotypic variance into three latent sources of variation:

  • A—additive genetic variance [red] represents cumulative impact of genes;
  • C—shared/common environment variance [purple] results from influences to which both members of a twin pair are exposed; and
  • E—unique environment variance [green] is events occurring to one twin but not the other, and includes measurement error.

fcell-10-982609-g002

Despite tight genetic control of the IgG glycome:

  • Heritability analysis of the glycan clock revealed only a moderate genetic contribution averaging around 39% [A, left side].
  • Including age of the individuals as a covariate in heritability analysis averaged 71% heritability estimates [B, right side].
  • Mean time difference was 7.5 years for points 1 and 2, and 6 years for points 2 and 3.

Observed increase in the genetic component could be a consequence of chronological age as a shared environmental variance characteristic for every individual and determined by their genetic makeup and epigenetic regulation.”

https://www.frontiersin.org/articles/10.3389/fcell.2022.982609/full “Heritability of the glycan clock of biological age”


Although A rejuvenation therapy and sulforaphane was cited, these researchers missed its central premise: Pro-aging epigenetic programming is directional and not purely random. Contrasting their above graphic’s heritability estimates of 39% with the age-regressed, right side’s average 71% could hardly have been more clear in illustrating this fact.

This study instead stated “Aging in general leads to epigenetic mediated deregulation of genes.” This weak sauce accompanied speculations such as “supports the notion that the glycan clock can be rejuvenated by simple lifestyle choices.”

Researchers almost always want to claim being first in finding x, y, or z. These researchers could have done that in this glycan clock study by highlighting an outstanding finding. So what happened?

An alternate explanation to their paradigm blinding them could be sponsor expectations, peer pressures, etc. I’ll ask them about it, and will update here with their response.


PXL_20221231_185407365

Week 144 of Changing to a youthful phenotype with sprouts

Two papers, starting with a 2023 study that investigated the same red radish cultivar as Sulforaphene, a natural analog of sulforaphane:

“Availability of microgreen products is constantly rising, i.e., they are offered for sale in local farmers markets, specialty stores, and in chain grocery stores. Due to the low demands required for their cultivation and easily available LED settings, microgreens are increasingly grown on a small scale in homes and after harvesting, they are stored in kitchen refrigerators at 4 °C.

The aim of this study was to simulate such cultivation and storage conditions to examine antioxidant capacity of home-grown radish microgreens. Seven-day-old radish microgreens, grown under purple and white LED light, were harvested and stored at 4 °C for two weeks.

Measurements of total antioxidant capacity and bioactive substances were conducted on the harvesting day and on the 3rd, 7th, and 14th day of storage. All three radish cultivars (Raphanus sativus L.) with different leaf colorations:

  • Purple radish (R. sativus cult. China Rose, cvP);
  • Red radish (R. sativus cult. Sango, cvR); and
  • Green radish (Raphanus sativus var. longipinnatus, Japanese white or daikon radish, cvG)

were purchased commercially from a local supplier.

The highest contents of total soluble phenolics, proteins, and sugars, dry matter, and monomeric anthocyanin content, as well as higher overall antioxidant capacity determined in the red radish cultivar (cvR), distinguished this cultivar as the most desirable for human consumption regardless of the cultivation light spectrum.”

https://www.mdpi.com/2311-7524/9/1/76 “Antioxidant Capacity and Shelf Life of Radish Microgreens Affected by Growth Light and Cultivars”


A 2021 review summarized what was known about radishes up to then. Here’s part of its Discussion section:

“It is worth considering radish’s organoleptic characteristics since its particular flavor can influence its acceptability among consumers. The main compound associated with its characteristic pungent flavor is raphasatin, which we have found to be the most reported isothiocyanate produced from the breakdown of glucoraphasatin.

Glucoraphasatin ranked as one of the most concentrated glucosinolates in radish, particularly in its sprouts, but also present in other parts like roots and seeds. Pungency differs among radish cultivars, environmental growth factors, agronomic, and cooking practices.”

1-s2.0-S0924224421003058-gr3_lrg

https://www.sciencedirect.com/science/article/pii/S0924224421003058 “Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review”


Seeds I’ve sprouted this year so far, left to right – red radish (Sango), broccoli, red cabbage (Red Acre), yellow mustard, oat (Avena sativa):

PXL_20230106_121548495

Red radish had similar growth characteristics as broccoli. Started with 3.6 grams of seeds, which increased to 22.2 g after three days using the same soaking and rinsing protocol I use for other sprouts.

PXL_20230109_121815772

The taste of red radish was too sharp for me to eat by themselves, so I combined them with my broccoli / red cabbage / mustard sprout mix. Bumped up microwaving time to 48 seconds in a 1000 W microwave while staying short of the 60°C (140°F) myrosinase cliff.

The whole mix still had a strong radish taste, though. It was as if two whole red radishes were sliced into a small salad.

Can’t add anything more to dampen that taste and expect beneficial compounds to be unaffected. From Week 19:

A 2018 Netherlands study Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels found:

Compared to the control broccoli sprout, incorporation of sprouts in gels led to lower bioavailability for preformed sulforaphane and iberin.”

IAW, eating protein, fats, and fiber along with microwaved broccoli sprouts wouldn’t help. A 2018 review with some of the same researchers Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion offered one possible explanation for protein acting to lower broccoli sprout compounds’ bioavailability:

“In vitro studies show that ITCs can potentially react with amino acids, peptides, and proteins, and this reactivity may reduce the ITC bioavailability in protein‐rich foods. More in vivo studies should be performed to confirm the outcome obtained in vitro.”

Mixing in red radish sprouts also gave me an upset stomach five of the six mornings. So I won’t continue to sprout red radish.

That said, I’d definitely consider sprouting red radish again to accelerate isothiocyanate treatment of problems where symptoms are much worse than an upset stomach, such as:

  • Neurogenerative diseases with their cognitive decline;
  • Immune system disorders;
  • Bacterial and viral infections; and
  • Other damage caused by oxidative stress conditions in eyes, vascular system, kidney function, etc.

Piping in the New Year

PXL_20230101_193048797

Sulforaphene, a natural analog of sulforaphane

Three papers on sulforaphene, starting with a 2022 in vitro digestion study by Our model clinical trial for Changing to a youthful phenotype with broccoli sprouts group:

“This work aims to assess anti-inflammatory potential of bioactive compounds of cruciferous sprouts red radish (RRS) and red cabbage (RCS) in their bioaccessible form (obtained by the digestion of aqueous extracts). We used a well-established in vitro inflammation cellular model consisting of human macrophage-like HL60 cells stimulated with LPS, which mimics systemic chronic inflammatory conditions present in certain non-communicable diseases such as cardiovascular disease, cancer, and diabetes.

d2fo02914f-f1

Composition of RRS and RCS digestates extracts presented differences with a 20% lower content of total isothiocyanates (ITCs) in RRS than in RCS. However, there was more variability in the compounds present in RRS than in RCS extract digestates, including sulforaphene (SFE) and 3,3′-diindolylmethane (DIM), which were exclusively present in RRS.

RCS extract showed a trend of decreasing both TNF-α and IL-6 production under LPS-stimulated conditions, and this inhibitory effect was mainly observed at final protein expression. This activity at higher rates might be related to the inhibitory ability of iberin upon TLRs dimerization, impairing the NF-κB signaling pathway.

On the other hand, RRS exhibited a significant dose–response inhibition of IL-6 production levels. This difference in better performance of RRS compared to RCS could be exerted by the higher concentration of sulforaphane, and the exclusive presence of SFE, DIM, and anthocyanins in RRS.”

https://pubs.rsc.org/en/content/articlelanding/2023/FO/D2FO02914F “Anti-inflammatory potential of digested Brassica sprout extracts in human macrophage-like HL-60 cells”

I was surprised that this study didn’t detect anthocyanins in 8-day-old red cabbage sprout digestates, as they are visibly present in red cabbage sprouts. For example, from Week 56:

PXL_20210504_212505224


Reference 32 of this study was a 2021 review:

“Sulforaphene (SRP), as a product derived from glucoraphenin in the presence of myrosinase, mainly exists in cruciferous plants, especially in dried and mature seeds of radish. The most abundant ITC in juice of R. sativus L. coming from Sango freeze-dried sprouts is SRP. There is no safe and efficient SRP chemical synthesis which could be industrialized.

Structural variation in ITCs, such as the presence of particular functional group, molecular size, and length of a hydrocarbon chain, often results in very diverse antimicrobial activities. SRP, which is similar to sulforaphane in chemical structure but has an extra double bond, shows a much higher antimicrobial activity. However, the exact explanation for this enhanced microbial activity remains unknown.”

https://www.tandfonline.com/doi/full/10.1080/15422119.2021.1944209 “Sulforaphene: Formation, stability, separation, purification, determination and biological activities” (not freely available) Thanks to Dr. Jie Zhang for providing a copy.

Eat broccoli sprouts instead of antibiotics had two papers on ITCs’ antimicrobial actions.


A third paper was a 2022 cell study:

“Acne is a chronic inflammatory disease of the sebaceous gland attached to hair follicles. Cutibacterium acnes is a major cause of inflammation caused by acne.

It is well known that C. acnes secretes a lipolytic enzyme to break down lipids in sebum, and free fatty acids produced at this time accelerate the inflammatory reaction. There are several drugs used to treat acne; however, each one has various side effects.

We examined effects of sulforaphene (SFEN) on bacterial growth and inflammatory cytokine production induced by C. acnes. SFEN showed antibacterial activity against C. acnes and controlled the inflammatory response on keratinocytes and monocytes. This finding means that SFEN has potential as both a cosmetic material for acne prevention and a pharmaceutical material for acne treatment.”

https://www.jmb.or.kr/journal/download_pdf.php?doi=10.4014/jmb.2209.09051 “Sulforaphene Attenuates Cutibacterium acnes-Induced Inflammation”


I ordered the Sango variety of red radish seeds used in this first study, to arrive in two weeks. I expect that their flavor and sulforaphene combination will be a good substitute for the mainly-flavor mustard third of my 3-day-old sprouts brocolli / red cabbage / mustard sprouts morning mix.

Home sprouting cupboard setup, with Avena sativa twice-daily hulled oats sprouts on top:

PXL_20221208_123517082

Do broccoli sprouts treat asthma?

This 2022 rodent study investigated sulforaphane’s effects on airway disease:

“Sulforaphane has been studied in numerous preclinical and clinical models of lung damage and airway diseases. The lack of definitive findings from clinical studies to date most likely reflects issues with extract preparations and dosage regimes.

We investigated effects of administration of L-sulforaphane (LSF), which is also known as (R)-sulforaphane, in a murine model of ovalbumin (OVA)-induced chronic allergic airways disease (AAD). This model of chronic AAD recapitulates several features of human asthma including airway inflammation, airway remodeling, and airway hyper-responsiveness.

Our findings confirmed the efficacy of LSF in attenuating pathologies associated with AAD, involving activation of antioxidant and anti-inflammatory pathways. Inhibition of HDAC enzymes by LSF and accumulation of acetylated core histones and α-tubulin in vivo following LSF administration represent an important epigenetic regulatory mechanism. LSF and its metabolites may modulate HDAC6 and HDAC8 enzymes by binding to the catalytic site.

sulforaphane asthma

Our findings along with accumulated evidence, highlight the clinical potential of sulforaphane as either a prophylactic or a therapeutic in the context of AAD.”

https://link.springer.com/article/10.1007/s00018-022-04609-3 “Sulforaphane prevents and reverses allergic airways disease in mice via anti-inflammatory, antioxidant, and epigenetic mechanisms” (not freely available)


PXL_20221214_200748143

Eat mushrooms every day?

Three 2022 papers on amino acid ergothioneine, starting with a human study:

“We examined temporal relationships between plasma ergothioneine (ET) status and cognition in a cohort of 470 elderly subjects attending memory clinics in Singapore. All participants underwent baseline plasma ET measurements as well as neuroimaging for cerebrovascular disease (CeVD) and brain atrophy. Neuropsychological tests of cognition and function were assessed at baseline and follow-up visits for up to five years.

Lower plasma ET levels were associated with poorer baseline cognitive performance and faster rates of decline in function as well as in multiple cognitive domains including memory, executive function, attention, visuomotor speed, and language. In subgroup analyses, longitudinal associations were found only in non-demented individuals.

Mediation analyses showed that effects of ET on cognition seemed to be largely explainable by severity of concomitant CeVD, specifically white matter hyperintensities, and brain atrophy. Our findings support further assessment of plasma ET as a prognostic biomarker for accelerated cognitive and functional decline in pre-dementia and suggest possible therapeutic and preventative measures.”

https://www.mdpi.com/2076-3921/11/9/1717 “Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics”


Earlier this year, two of the study’s coauthors put together a collection of 11 ergothioneine papers:

“One catalyst for this upsurge of interest was the discovery in 2005 of a transporter for ET (OCTN1, often now called the ergothioneine transporter, ETT), which accounts for the fact that animals (including humans) take up and avidly retain ET from the diet. The presence of a specific transporter together with the avid retention of ET in the body implies that this compound is important to us.

To quote an old phrase ‘correlation does not imply causation.’ Low ET levels may predispose to disease, but disease could also lead to low ET levels. Possible reasons could include:

  • Alterations in diet due to illness so that less ET is consumed;
  • Decreases in ETT activity in the gut (leading to less ET uptake) or kidney (impairing ET reabsorption) with age and disease.
  • Changes in gut microbiota might influence uptake and accumulation in the body.
  • ET is being consumed as it scavenges oxygen radicals and other reactive oxygen species, the production of which is known to increase in these diseases and during ageing in general.

Only the gold standard of placebo-controlled double-blinded clinical studies can definitively establish the value (if any) of ET in preventing or treating human disease. Several such trials are being planned or in progress; we await the results with interest, and a streak of optimism.”

https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14350 “Ergothioneine, where are we now?”


One of the collection’s papers focused on what ETT research findings could or could not be replicated:

“ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable. We review substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes.

Comparison of transport efficiency (TE) for acknowledged substrates of the ETT. Bar length represents approximate TE of wild-type human ETT.

feb214269-fig-0001-m

We have not found in the literature any other ET transporters. However, it is highly probable that additional ET transporters work in the human body:

  • Uptake of ET from the small intestine into epithelial cells occurs through apically localized ETT. The very hydrophilic ET cannot then exit these cells toward the blood without help – a basolateral efflux transporter is required.
  • After oral administration of 3H-ET, a considerable amount of ET was still absorbed into the body in the ETT KO [knockout] mice. There must be another transporter for apical uptake at least in the small intestine of the mouse.
  • When ET was administered intravenously, ETT KO mice showed no change in ET concentration in the brain compared to wild type. The little ET that enters the brain must therefore pass through the BBB via a different transporter.”

https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14269 “The ergothioneine transporter (ETT): substrates and locations, an inventory”


It’s persuasive that there’s an evolutionarily conserved transmitter specific to ergothioneine. It isn’t persuasive that this compound once consumed is almost always in stand-by mode to do: what?

Ergothioneine isn’t a substitute for the related glutathione, especially since its supply isn’t similarly available from an endogenous source. It isn’t an active participant in day-to-day human life.

Still, I hedge my bets. I eat ergothioneine every day via white button mushrooms in AGE-less chicken vegetable soup at a cost of about $1.30.

PXL_20221210_191511270

Eat broccoli sprouts to epigenetically regulate histones

Five papers on beneficial effects from sulforaphane inhibiting histone deacetylases (HDACs), starting with a 2022 rodent cell study:

“Sulforaphane (SFN) has tissue specificity for subtypes of HDACs that are downregulated. For example:

  • In breast cancer cells, HDAC1-3 are inhibited by SFN to induce cell apoptosis;
  • In skin cells, HDAC1-4 are regulated by SFN [anti-skin cancer]; and
  • In the cochlea, SFN inhibits HDAC2, 4, and 5 [attenuates hearing loss].

In the present study, SFN significantly inhibited HDAC2, 3, and 5 expression and HDACs activity in cardiomyocytes, thereby increasing H3 acetylation levels in the Nrf2 promoter and upregulating Nrf2 expression. Mechanism by which SFN prevents Ang II-induced cardiomyocyte apoptosis:

  • Ang II activates oxidative stress by increasing ROS leading to inflammation, oxidative stress and fibrosis in cardiomyocytes.
  • SFN prevents Ang II-induced cardiomyocyte apoptosis by inhibiting HDACs to activate Nrf2 and downstream antioxidant genes.

aging-14-204247-g007

SFN activates Nrf2 by inhibiting HDACs expression and activation.”

https://www.aging-us.com/article/204247/text “Sulforaphane inhibits angiotensin II-induced cardiomyocyte apoptosis by acetylation modification of Nrf2”


A 2021 rodent study found:

“SFN significantly attenuated diabetes-induced renal fibrosis in vivo. SFN inhibited diabetes-induced increase in HDAC2 activity.

Bone morphologic protein 7 (BMP-7) has been shown to reduce renal fibrosis induced by transforming growth factor-beta1. SFN protects against diabetes-induced renal fibrosis through epigenetic up-regulation of BMP-7.”

dmj-2020-0168f7

https://e-dmj.org/journal/view.php?doi=10.4093/dmj.2020.0168 “Sulforaphane Ameliorates Diabetes-Induced Renal Fibrosis through Epigenetic Up-Regulation of BMP-7”


A 2019 human osteosarcoma cell study found:

“SFN inhibits mTOR in a concentration- and time-dependent manner. This inhibition occurs in the presence or in the absence of NRF2.

SFN inhibits HDAC6 and decreases catalytic activity of AKT, which partially explains the mechanism by which SFN inhibits mTOR.”

https://www.sciencedirect.com/science/article/pii/S0944711319302284 “The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner”


A 2022 review cited a 2018 cell study:

“HDAC expression and activity are dysregulated in various diseases including asthma, chronic obstructive pulmonary disease, cancer, cardiac hypertrophy, and neurodegenerative and psychological disorders. HDAC inhibitors could be a potential therapeutic target for many diseases.

In hypertension, aortic stiffness is usually increased and vascular smooth muscle cells (VSMCs) contribute to vascular stiffness. We used VSMCs to test the degree of acetylation of histones in this study.

Sulforaphane weakly inhibited HDAC2 and effectively inhibited HDAC9.”

https://www.sciencedirect.com/science/article/pii/S0006295222002052 “Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension”

https://www.sciencedirect.com/science/article/abs/pii/S0753332217364636 “Inhibition of class IIa histone deacetylase activity by gallic acid, sulforaphane, TMP269, and panobinostat” (not freely available)


PXL_20221125_211516042

What do we know about human aging from mouse models?

Here is a 2021 rodent study and relevant parts from 3 of its 26 citing papers:

“A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging.

To better understand age-related changes across the lifespan, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Assessment of functional aging in humans and mice: age-related patterns were determined based on representative data (Table 2), and then superimposed onto survival rate. (A) Body weight, (B) locomotor activity, (C) gait velocity, (D) grip strength, (E) trait anxiety, (F) memory requiring low attention level, and (G) memory requiring high attention level.

fnagi-13-697621-g012

These functional alterations across ages are non-linear, and patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age.

Functional aging of male C57BL/6J mice starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mice might be better determined on the basis of its functional capabilities.”

https://www.frontiersin.org/articles/10.3389/fnagi.2021.697621/full “Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype”


“Studies in mice show that physical function (i.e., locomotor activity, gait velocity, grip strength) begins to deteriorate around post-natal day (PND) 180, but cognitive functions (i.e., memory) do not exhibit impairment until roughly PND 660. Our results should be considered within the context of behavior changing throughout vole adulthood. Caution should be taken to avoid categorizing the oldest age group in our study as ‘elderly’ or ‘geriatric.'”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276897 “Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age”


“We used adult mice ranging in age from 5-6 months, not enough to modify experimental autoimmune encephalomyelitis progression. Mice are considered adult after 8 weeks; however, rapid growth for most biological processes is observed until 3 months of age, while past 6 months, mice might be affected by senescence.”

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1036680/full “Age related immune modulation of experimental autoimmune encephalomyelitis in PINK1 knockout mice”


“Locomotor activity and gait velocity of 12 months old male C57BL/6 correlates with an elderly human being aged 60 or older, supporting that the ~15 months old mice we used in our study were aged mice at the time of tissue collection.”

https://www.mdpi.com/1422-0067/23/20/12461 “Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diesel Exhaust”


PXL_20221122_200643133

Do broccoli sprouts treat gout and kidney stones?

This 2022 rodent study investigated glucoraphanin’s effects on reducing uric acid:

“Hyperuricemia is a chronic disease characterized by abnormally elevated serum uric acid levels. Sulforaphane could lower uric acid by decreasing urate synthesis and increasing renal urate excretion in hyperuricemic rats.

A hyperuricemia model was established by administering feedstuffs with 4% potassium oxonate and 20% yeast. Forty male Sprague–Dawley rats were randomly divided into the normal control, hyperuricemia, allopurinol, and sulforaphane groups. Animals were treated by oral gavage for six consecutive weeks, and then phenotypic parameters, metabolomic profiling, and metagenomic sequencing were performed.

1-s2.0-S209012322200251X-ga1_lrg

We identified succinic acid and oxoglutaric acid as critical host-gut microbiome co-metabolites. Sulforaphane improved diversity of microbial ecosystems and functions, as well as metabolic control of the kidney. Sulforaphane exerted its renoprotective effect through epigenetic modification of Nrf2 and interaction between gut microbiota and epigenetic modification in hyperuricemic rats.

Limitations of this study include:

  1. We used glucoraphanin bioactivated with myrosinase for our experiments. Future experiments may directly involve sulforaphane.
  2. Bioinformatics analysis resulted in speculations that require further experimental testing.
  3. Further investigation of interactions between microbiota and the host epigenome is still needed.”

https://www.sciencedirect.com/science/article/pii/S209012322200251X “Sulforaphane-driven reprogramming of gut microbiome and metabolome ameliorates the progression of hyperuricemia”


It was a stretch to label treatment subjects as the “sulforaphane group” by claiming “Glucoraphanin (10 mg/kg) was metabolized to SFN by myrosinase as described in previous studies.” Both this and the referenced 2014 study “(RS)-glucoraphanin purified from Tuscan black kale and bioactivated with myrosinase enzyme protects against cerebral ischemia/reperfusion injury in rats” measured glucoraphanin and myrosinase, but not sulforaphane.

A human equivalent to this study’s daily glucoraphanin intake of 10 mg / kg weight would be (.162 x 10 mg) x 70 kg = 113 mg. Whether 10 mg was dry or wet weight wasn’t disclosed.

If 10 mg was wet, 113 mg is a little more than twice our model clinical trial’s average glucoraphanin intake of 51 mg fresh weight from eating 30 grams / day of super sprouts. In April 2020’s Understanding a clinical trial’s broccoli sprout amount, a study coauthor said:

“We considered 30 g and 60 g to be 1/2 and 1 portion per day, respectively, of broccoli sprouts. When we carried out tests with consumers, previous to the bioavailability studies, higher amounts per day were not easy to consume and to get eaten by participants.”

PXL_20221112_201430280