A problematic study of beliefs and dopamine

This 2015 Virginia Tech human study found:

“Dopamine fluctuations encode an integration of RPEs [reward prediction errors, the difference between actual and expected outcomes] with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been.

How dopamine fluctuations combine the actual and counterfactual is unknown.”

From the study’s news coverage:

“The idea that “what could have been” is part of how people evaluate actual outcomes is not new. But no one expected that dopamine would be doing the job of combining this information in the human brain.”

Some caveats applied:

  • Measurements of dopamine were taken only from basal ganglia areas. These may not act the same as dopamine processes in other brain and nervous system areas.
  • The number of subjects was small (17), they all had Parkinson’s disease, and the experiment’s electrodes accompanied deep brain stimulation implantations.
  • Because there was no control group, findings of a study performed on a sample of people who all had dysfunctional brains and who were all being treated for neurodegenerative disease may not apply to a population of people who weren’t similarly afflicted.

The researchers didn’t provide evidence for the Significance section statement:

“The observed compositional encoding of “actual” and “possible” is consistent with how one should “feel” and may be one example of how the human brain translates computations over experience to embodied states of subjective feeling.”

The subjects weren’t asked for corroborating evidence about their feelings. Evidence for “embodied states of subjective feeling” wasn’t otherwise measured in studied brain areas. The primary argument for “embodied states of subjective feeling” was the second paragraph of the Discussion section where the researchers talked about their model and how they thought it incorporated what people should feel.

The study’s experimental evidence didn’t support the researchers’ assertion – allowed by the reviewer – that the study demonstrated something about “states of subjective feeling.” That the model inferred such “findings” along with the researchers’ statement that it “is consistent with how one should “feel” reminded me of a warning in The function of the dorsal ACC is to monitor pain in survival contexts:

“The more general message you should take away from this is that it’s probably a bad idea to infer any particular process on the basis of observed activity.”


The same researcher who hyped An agenda-driven study on beliefs, smoking and addiction that found nothing of substance was back again with statements such as:

“These precise, real-time measurements of dopamine-encoded events in the living human brain will help us understand the mechanisms of decision-making in health and disease.”

It’s likely that repeated hubris is one way researchers respond to their own history and feelings, such as their need to feel important as mentioned on my Welcome page.

The Parkinson’s patients were willing to become lab rats with extra electrodes that accompanied brain implantations to relieve their symptoms. Findings based on their playing a stock market game didn’t inform us about “mechanisms of decision-making in health and disease” in unafflicted humans. As one counter example, what evidence did the study provide that’s relevant to healthy humans’ decisions to remain healthy by taking actions to prevent disease?

The unwarranted extrapolations revealed a belief that the goal of research should be to explain human actions by explaining the actions of molecules. One problem caused by the preconceptions of this widespread belief is that it leads to study designs and models that omit relevant etiologic evidence embedded in each of the subjects’ historical experiences.

This belief may have factored into why the subjects weren’t asked about their feelings. Why didn’t the study’s design consider as relevant subject-provided evidence for feelings? Because the model already contrived explanations for feelings underlying the subjects’ actions.

http://www.pnas.org/content/113/1/200.full “Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward”

Fat made rats fat with dysfunctional brains

This 2015 New York rodent study found:

“Early stage [diet-induced] obesity, before the onset of diabetes or metabolic syndrome, produced deficits on cognitive tasks that require the prefrontal cortex.

These results strongly suggest that obesity must be considered as a contributing factor to brain dysfunction.”

The difference in the diets of the adult male subjects was that the control group ate 10% fat (20% protein, 70% carbohydrates) whereas the obese group ate 45% fat (20% protein, 35% carbohydrates). Significant changes in body weight were present after the first two weeks on the diets, but testing didn’t begin until after eight weeks.


I thought the study design prematurely terminated the experiments. The study didn’t justify the ultimate purpose of conducting rodent experiments, which is to find possible human applicability.

One study design possibility would have been to continue through old age to find how the conditions progressed. Another possibility would have been to reverse the high-fat diet to find whether the conditions reversed.

http://www.pnas.org/content/112/51/15731.full “Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function”

It is known: Are a study’s agendas more important than its evidence?

This 2015 Swiss human study’s Abstract began:

“It is known that increased circulating glucocorticoids in the wake of excessive, chronic, repetitive stress increases anxiety and impairs Brain-Derived Neurotrophic Factor (BDNF) signaling.”


The study had several statements that were unconvincingly supported by the study’s findings. One such statement in the Conclusions section was:

“This study supports the view that early-life adversity may induce long-lasting epigenetic changes in stress-related genes, thus offering clues as to how intergenerational transmission of anxiety and trauma could occur.”

However, the study’s evidence for “intergenerational transmission of anxiety and trauma” as summarized in the Limitations section was:

“This study did not directly associate child behavior or biology to maternal behavior and biology.”

In another example, the Discussion section began with:

“The severity of maternal anxiety was significantly correlated with mean overall methylation of 4 CpG sites located in exon IV of the BDNF promoter region as measured from DNA extracted from mothers’ saliva.

In addition, methylation at CpG3 was also significantly associated with maternal exposure to domestic violence during childhood, suggesting that BDNF gene methylation levels are modulated by early adverse experiences.”

The researchers assessed five DNA methylation values (four individual sites and the overall average). The CpG3 site was “significantly associated with maternal exposure to domestic violence during childhood” and the three other CpG sites’ methylation values were not.

IAW, the researchers found only one of four sites’ methylation values significantly associated to only one of many studied early adverse experiences. This finding didn’t provide sufficient evidence to support the overarching statement:

“BDNF gene methylation levels are modulated by early adverse experiences.”

To make such a generally applicable statement – more than one BDNF gene’s methylation levels could be directly altered by more than one early adverse experience – the researchers would, AT A MINIMUM, need to provide evidence that:

  1. The one category of significantly associated early adverse experience directly altered the one significantly associated CpG site’s DNA methylation level
  2. Other categories of early adverse experiences were fairly represented by the one significantly associated experience category
  3. Other categories of early adverse experiences could directly alter other BDNF genes’ DNA methylation levels
  4. The significantly associated DNA methylation level of only one out of four CpG sites was fairly represented by the overall average of the four sites
  5. Other BDNF gene’s methylation levels were fairly represented by the overall average of the four sites

If researchers and sponsors must have agendas, a worthwhile, evidence-supported one would be to investigate prenatal and perinatal epigenetic causes for later-life adverse effects.

As Grokking an Adverse Childhood Experiences (ACE) score pointed out, environmental factors that disrupt neurodevelopment may be the largest originators of epigenetic changes that are sustained throughout an individual’s entire lifespan.

What’s the downside of conducting studies that may “directly associate child behavior or biology to maternal behavior and biology” during time periods when a child’s environment has the greatest impact on their development?

When prenatal and perinatal periods aren’t addressed, researchers and sponsors neglect the times during which many harmful epigenetic consequences may be prevented. It is known.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143427 “BDNF Methylation and Maternal Brain Activity in a Violence-Related Sample”

Emotional memories create long-term epigenetic changes

This 2015 German rodent study found:

Histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression.

Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning.”

Chromatin modifications in two limbic system brain areas were studied – the hippocampus (CA1 region) for short-term memories and the anterior cingulate cortex for short-and long-term memory formation and maintenance. The memories were induced by context (C) and context shock (CS) exposure:

“Overall, the data provides very strong and robust evidence for the establishment of long-term memory upon CS exposure, whereas C exposure alone did not induce the formation of long-term memory.”

So, without long-term shock/emotional memories, there would be no positive long-term findings for the researchers to report. There would be no lasting:

  • “Histone modifications
  • DNA methylation changes
  • Changes in gene expression”

The subjects were young adults at age 3 months. The CA1 and ACC studied brain areas are fully developed before this age.

It seemed feasible that if the study were performed with younger subjects, the results may have been different. For example:

“Context exposure alone did not induce the formation of long-term memory”

may not have been the finding for early learning situations.


The researchers qualified their results several times with the phrase “changes are limited to actively expressed genes.” A similar qualifier in A study of DNA methylation and age was a reminder that unexpressed genes may have also been important:

The textbook case of DNA methylation regulating gene expression (the methylation of a promoter and silencing of a gene) remains undetected in many cases because in an array analysis, an unexpressed gene shows no signal that can be distinguished from background and is therefore typically omitted from the analysis.”

This general qualifier may not have necessarily applied to the current study, though, because the study’s design included an unexposed control group.

http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4194.html “DNA methylation changes in plasticity genes accompany the formation and maintenance of memory”

Brain-region-specific energy metabolism affected the social competitiveness of highly-anxious rats

This 2015 Swiss rodent study found:

Mitochondrial function in the nucleus accumbens, a brain region relevant for motivation and depression, is a critical mediating factor in the subordinate status displayed by high-anxious rats.

Treatment with nicotinamide, an amide form of vitamin B3 that boosts mitochondrial respiration, into the NAc [nucleus accumbens] of high-anxious rats at a time point before the social encounter and at a dose that increased accumbal mitochondrial respiration, abolished the disadvantage of high-anxious animals to become dominant against low-anxious animals.

Our findings highlight a key role for brain energy metabolism in social behavior and point to mitochondrial function in the nucleus accumbens as a potential marker and avenue of treatment for anxiety-related social disorders.”

The researchers handled individual differences of the outbred subjects by separating them into high-, intermediate-, and low-anxiety categories according to their responses on two tests. The high- and low-anxiety subjects were matched by weight, age, and social experience.

Here are a few examples of the researchers thoroughly ruling out confounding factors:

“Differences in social competitiveness are not related to overall differences in social motivation or sociability.


Although social competition did significantly increase corticosterone compared with baseline levels, there were no significant differences between anxiety groups at either time point.


Microinfusion of either ROT, MA, or 3NP [mitochondrial respiration inhibitors] reduced the success of treated animals to win the social contest.

Importantly, these treatments did not induce side effects on social investigation or auto-grooming during social competition, or alter locomotor activity, anxiety, or sociability in additional experiments.

Furthermore, these inhibitor treatments did not produce neurotoxic effects, as the drugs were infused at low doses and we confirmed the absence of lesion and neuronal death.

The effects of complex I or complex II inhibition on social competition were specific for the NAc, as infusions of the same inhibitors into the BLA [basolateral amygdala] had no effect on social dominance and did not affect general locomotor activity.

We further showed that, unlike infusion of muscimol [a GABA receptor agonist] in the BLA that interferes with BLA-dependent auditory fear conditioning, 3NP did not affect conditioning in this task, discarding that neuronal inactivation could be a general mechanism whereby impairing mitochondrial function would affect putative functions from the affected brain region.


The impact of mitochondrial function in social competition described here is not mediated by oxidative stress.”

http://www.pnas.org/content/112/50/15486.full “Mitochondrial function in the brain links anxiety with social subordination”

A study of stress factors and neuroplasticity during infancy/early childhood

This 2015 French rodent study found:

“The coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.

Genetic strategies that disrupted GR [glucocorticoid receptor] phosphorylation or TrkB [the BDNF receptor] signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine.

We demonstrate that fluoxetine prevented the neuroplasticity of chronic stress by priming GR phosphorylation at BDNF-sensitive sites.”


It wasn’t too difficult to see how many of the stressors had human equivalents during infancy/early childhood:

“To determine the plasticity of GR phosphorylation upon changes in the endogenous levels of BDNF and glucocorticoids, mice were exposed to a chronic unpredictable stress that included one daily random stressor for 10 consecutive days from P21 [immediately after weaning] to 1 mo of age.

Chronic unpredictable stress includes one of the following daily random stressors (wet bedding, no bedding, food deprivation, crowded cage, 2 h or 6 h restraining, forced swim, tail suspension).”

But who would give fluoxetine – Prozac – to a human infant or young child to prevent “the neuroplasticity of chronic stress” from having adverse effects?

http://www.pnas.org/content/112/51/15737.full “Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment”

Where do our beliefs about our children come from? An autism example

A 2015 case study by Ohio physicians highlighted:

“Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms.

These symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians.

The case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction.”

I was somewhat taken aback by the Abstract and Introduction statements:

“All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized.

This form of ASD is known to be heritable, as are all forms of ASD, despite the previous belief to the contrary, though the mechanisms of inheritance, both genetic and epigenetic, are not well characterized.”

The definition of heritable as used was “able to be passed from parent to child before birth.” The reference provided was a 2014 French review Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms.

I didn’t see the “known to be heritable” phrase mentioned in the referenced review. However, I also didn’t see anything stated in the review or cited from its 217 references that disproved this phrase.


I shouldn’t have been surprised by “despite the previous belief to the contrary” in the above quotation. I’d guess that the physicians frequently encountered parents who needed such beliefs when faced with their child’s condition.

A relevant hypothesis of Dr. Arthur Janov’s Primal Therapy is: a major function that our cerebrums have evolutionarily adapted is to use ideas and beliefs to repress pain and make us more comfortable.

I value this inference as an empathetic method of interpreting people’s behaviors and expressions of thoughts and feelings.

When a “known to be heritable” phrase can unleash pain, it likely won’t be understood in its appropriate context. Among the physicians’ challenges was a barrier that kept the parent’s pain from being felt – the belief.

http://innovationscns.com/autism-in-the-son-of-a-woman-with-mitochondrial-myopathy-and-dysautonomia-a-case-report/ “Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report”


2023 update – After all the medical gaslighting on display this decade, I don’t what it would take for me to trust a medical professional anymore. These doctors ‘knew’ somehow that autism was heritable, yet couldn’t describe mechanisms of inheritance? Please. Why were medical professionals trusted in the first place?

Increased epigenetic brain capacity is an evolved human characteristic

This 2015 George Washington study compared human and chimpanzee brain attributes to find:

“The morphology of the human cerebral cortex is substantially less genetically heritable than in chimpanzees and therefore is more responsive to molding by environmental influences.”

From the news coverage:

“We found that the anatomy of the chimpanzee brain is more strongly controlled by genes than that of human brains, suggesting that the human brain is extensively shaped by its environment no matter its genetics.

Though our findings suggest that the increased plasticity found in human brains has many benefits for adaptation, it is also possible that it makes our brain more vulnerable to many human-specific neurodegenerative and neurodevelopment disorders.”

The study demonstrated an aspect of how natural selection of species leading to Homo sapiens – after humans and chimpanzees shared a common ancestor – favored our increased capacity to adapt to our environments.

http://www.pnas.org/content/112/48/14799.full “Relaxed genetic control of cortical organization in human brains compared with chimpanzees”

A problematic study of DNA methylation in frontal cortex development and schizophrenia

This 2015 Baltimore human study found:

CpGs that differ between schizophrenia patients and controls that were enriched for genes related to development and neurodifferentiation.

The schizophrenia-associated CpGs strongly correlate with changes related to the prenatal-postnatal transition and show slight enrichment for GWAS [genome-wide association study] risk loci while not corresponding to CpGs differentiating adolescence from later adult life.

Only a fraction of the illness-associated CpGs, 4.6%, showed association to nearby genetic variants in the meQTL [methylation quantitative trait loci] analysis, further suggesting that these findings may be more related to the epiphenomena of the illness state than to the genetic causes of the disorder.

These data implicate an epigenetic component to the developmental origins of this disorder.”

It wasn’t surprising in 2015 to find “an epigenetic component to the developmental origins of this disorder.” From the supplementary material:

“Diverse chromatin states suggest vastly different epigenetic landscapes of the prenatal versus postnatal human brain.

Approximately half of the CpGs had DNAm [DNA methylation] levels positively correlated with expression across the lifespan, and half had DNAm levels negatively correlated.

These results suggest that many of the epigenetic changes occurring between prenatal and postnatal life in prefrontal cortex manifest in the transcriptome, and that the directionality of association is not strictly linked to the location of the CpG or DMR [differentially methylated region] with respect to an annotated gene.

Diagnosis-associated CpGs were relatively small compared with those differentially methylated between fetal and postnatal samples.”


The studied brain area was limited to the dorsolateral portion of the prefrontal cortex, which isn’t mature in humans until we’re in our late teens/early twenties.

The researchers ignored brain areas that were fully developed or further along in development – such as the limbic system – during “the prenatal-postnatal transition.”

The researchers intentionally blinded themselves from discovering “many of the epigenetic changes occurring between prenatal and postnatal life” possibly associated with schizophrenia and these more-developed brain areas.

Where’s the evidence that the developmental origins of schizophrenia have no associations with brain structures whose development closely approximates their lifelong functionalities at birth?


The study’s limitations didn’t hamper researcher hubris in a press release for a site that touts business news, such as:

“This conclusion, while perhaps not the final verdict on the subject, is hard to resist given this remarkable evidence”

Did the spokesperson really understand GWAS? Or was he trying to exploit public ignorance of GWAS?

There’s a scientist’s view of GWAS at What do GWAS signals mean? that better puts this study’s findings into perspective. When understanding GWAS at an individual level, it should also be acknowledged that Genetic statistics don’t necessarily predict the effects of an individual’s genes.

http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4181.html “Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex” (not freely available). Use the full study link from the above-mentioned press release.

Trapped, suffocating, unable to move – a Primal imprint

“The malady of needing to move constantly: organizing trips, making reasons to go here and there, and in general, keeping on the move..below all that movement is a giant, silent scream.

The price we pay is never knowing our feelings or where they come from.

We have the mechanism for our own liberation inside of us, if we only knew it.

When we see constant motion we understand, but we never see the agony. Why no agony? Because it is busy being acted-out to relieve the agony before it is fully felt.”

http://cigognenews.blogspot.com/2015/11/epigenetics-and-primal-therapy-cure-for_30.html “The Miracle of Memory – Epigenetics and Primal Therapy: The Cure for Neurosis (Part 13/20)”

The emotional power of environmental sounds affects our sensory experiences

This 2015 Chinese/Australian study found:

“Human emotions systematically track changes in the acoustic environment, affecting not only how we experience those sounds but also how we perceive facial expressions in other people.

Three changes in acoustic attributes known to signal emotional states in speech and music [frequency spectrum, intensity, and rate] were imposed upon 24 environmental sounds.

Evolution promotes development in the direction toward selective advantage. Thus, it is reasonable to suggest that the capacity to track changes in the acoustic environment evolved before the development of a vocalization system for emotional communication.

Regardless of the evolutionary implications of the effect, the findings illustrate the emotional power of environmental sounds on both our experience of sounds and our evaluations of accompanying visual stimuli.”

Here are the sounds used in the study:

“Human actions (breathing, chatting, chewing, clapping, stepping, typing), animal sounds (bird, cat, cricket, horse, mosquito, rooster), machine noise (car engine, electrical drill, helicopter, jet plane, screeching tires, train), and sounds in nature (dripping water, rain, river, thunder, waves, wind)”


Does this emotional communication’s frequency spectrum, intensity, and rate affect your perception of her face?

http://www.pnas.org/content/112/47/14563.full “Human emotions track changes in the acoustic environment”

Mitochondria interface genetic/epigenetic responses to psychological stress

This 2015 Pennsylvania rodent study found:

Mitochondria can regulate complex whole-body physiological responses, impacting stress perception at the cellular and organismal levels.

Mitochondrial dysfunctions altered the

  1. hypothalamic–pituitary–adrenal [HPA] axis, sympathetic adrenal–medullary activation and catecholamine levels,
  2. the inflammatory cytokine IL-6,
  3. circulating metabolites, and
  4. hippocampal gene expression

responses to stress.

Stress-induced

  1. neuroendocrine,
  2. inflammatory,
  3. metabolic, and
  4. transcriptional responses

coalesced into unique signatures that distinguish groups based on their mitochondrial genotype.”

The study’s design was comprehensive for the subject of mitochondrial function and stress response categories. It interrelated elements that had a common cause of stress, such as:

  • Hyperglycemia
  • Increased lipids
  • Corticosterone sensitivity
  • Epigenetic changes within the brain

The study’s Figure 6E was a hierarchical “heat map” of the correlations among the 77 stress-induced changes that were measured. Figure 6G presented these variables per the five mitochondrial genotypes (a control wild-type and four genetic dysfunctions). Many of the lines forming the hierarchy needed careful reading of the study’s interpretations.


I downgraded the study’s rating because the authors inappropriately forced the “allostatic load” buzzword into the Significance statement and otherwise informative Discussion section. The term refers to a hypothetical long-term situation, but the study’s experiments lasted 2 hours at most before the subjects were killed.

www.pnas.org/content/112/48/E6614.full “Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress”

Familiar stress opens up an epigenetic window of neural plasticity

This 2015 Italian rodent study found:

“There is a window of plasticity that allows familiar and novel experiences to alter anxiety– and depressive-like behaviors, reflected also in electrophysiological changes in the dentate gyrus (DG).

A consistent biomarker of mood-related behaviors in DG is reduced type 2 metabotropic glutamate (mGlu2), which regulates the release of glutamate. Within this window, familiar stress rapidly and epigenetically up-regulates mGlu2..and improves mood behaviors.

These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated.”

The current study included two of the authors of A common dietary supplement that has rapid and lasting antidepressant effects.

The supplementary material showed the:

“Light–dark test as a screening method allowed identification of clusters of animals with a different baseline anxiety profile”

for the BDNF Val66Met subjects. This research methodology better handled the individual differences that often confound studies.

The study’s press release provided further details such as:

“Here again, in experiments relevant to humans, we saw the same window of plasticity, with the same up-then-down fluctuations in mGlu2 and P300 in the hippocampus, Nasca says. This result suggests we can take advantage of these windows of plasticity through treatments, including the next generation of drugs, such as acetyl-L-carnitine, that target mGlu2—not to ‘roll back the clock’ but rather to change the trajectory of such brain plasticity toward more positive directions.”


I disagree with the authoring researchers’ extrapolation of these rodent findings to humans, which seemed to favor chemical intervention. Causes of human stress should be removed or otherwise addressed.

I hope that the study’s “familiar stress” findings won’t be use to attempt to justify potentially harmful practices such as Critical Incident Stress Debriefing, which mandatorily guides people to process recent trauma. Instead, An interview with Dr. Rachel Yehuda on biological and conscious responses to stress made a point about “windows of plasticity” that’s relevant to who we are as feeling human beings:

“What I hear from trauma survivors — what I’m always struck with is how upsetting it is when other people don’t help, or don’t acknowledge, or respond very poorly to needs or distress.”

http://www.pnas.org/content/112/48/14960.full “Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity”

The function of the dorsal ACC is to monitor pain in survival contexts

This 2015 California human study was of the dorsal anterior cingulate cortex (dACC):

“No neural region has been associated with more conflicting accounts of its function than the dACC.

The best psychological description of dACC function was related to pain processing—not executive, conflict, or salience processing.

We conclude by considering that physical pain may be an instance of a broader class of survival-relevant goals monitored by the dACC, in contrast to more arbitrary temporary goals, which may be monitored by the supplementary motor area.”

A related brain area – the paracingulate sulcus (PCS) – and its impact on the study’s findings was discussed in the supplementary material:

“The PCS is present in a subset of the population and thus extends the dACC further in the dorsal direction. This possible additional sulcus is relevant because, for some individuals, the ventral portion of the SMA [supplementary motor area]/pre-SMA may actually be the PCS.

The vast majority of fMRI studies overlook most individual differences in neuroanatomy and depend on the probabilistic neuroanatomy averaged across a group of participants and then on standard atlases that typically don’t take these individual differences into account.

There are two structural forms of PCS. The “prominent” form extends through the entire dACC region; however the “present” form begins in the rostral ACC and ends near the anterior border of the dACC.

Men are significantly more likely than women to have unilateral or bilateral PCS.

Additionally, six morphology studies have indicated the existence of a PCS that is left-lateralized.”

How about that? A brain area that:

  • Assists in monitoring pain in the contexts of survival goals;
  • Size, form, and placement varies widely among individuals;
  • Is missing in some people!

Here’s a long critique of the study that included dialog with the authors:

http://www.talyarkoni.org/blog/2015/12/14/still-not-selective-comment-on-comment-on-comment-on-lieberman-eisenberger-2015/

“If you observe activation in dACC..your single best guess as to what process might be involved..should be ‘motor’ by a landslide. You could also guess ‘reward’ or ‘working memory’ with about the same probability as ‘pain.’

Of course, the more general message you should take away from this is that it’s probably a bad idea to infer any particular process on the basis of observed activity.”


And the authors’ “last comment”:

https://www.psychologytoday.com/blog/social-brain-social-mind/201601/more-evidence-pain-related-description-dacc

“Based on Neurosynth evidence, is more of the dACC selective for pain than for attention, autonomic, avoidance, conflict, emotion, error, executive, fear, negative affect, response inhibition, response selection, reward, and salience? Absolutely.”

http://www.pnas.org/content/112/49/15250.full “The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference”

A review of genetic and epigenetic approaches to autism

This 2015 Chicago review noted:

“Recent developments in the research of ASD [autistic spectrum disorder] with a focus on epigenetic pathways as a complement to current genetic screening.

Not all children with a predisposing genotype develop ASD. This suggests that additional environmental factors likely interact with the genome in producing ASD.

Increased risk of ASD is associated with mutations in genes that overlap with chromatin remodeling proteins, transcriptional regulators and synapse-associated proteins. Interestingly, these genes are also targets of environmentally induced changes in gene expression.”

Evidence was discussed for both broad and specific epigenetic ASD causes originating in the prenatal environment:

  • Maternal stress:

    “Prenatal stress exerts a profound epigenetic influence on GABAergic interneurons by altering the levels of proteins such as DNMT1 and Tet1 and decreasing the expression of various targets such as BDNF.

    Ultimately, this results in reducing the numbers of fully functional GABAergic neurons postnatally and a concomitant increased susceptibility toward hyperexcitability. The delayed migration of GABAergic interneuron progenitors results in reduced gene expression postnatally which is likely the consequence of increased amounts of DNA methylation.

    The net effect of stress during early development is to disrupt the balance of excitatory/inhibitory neuronal firing due to the loss of function associated with disrupted neuronal migration and maturation.”

  • Prenatal nutrition:

    “Exposure to a wide range of environmental toxins that impact neurodevelopment also result in global DNA hypomethylation. This model was extended to connect pathways between dietary nutrition and environmental exposures in the context of DNA hypomethylation. More recently, this hypothesis was expanded to show how dietary nutrients, environmental toxins, genome instability and neuroinflammation interact to produce changes to the DNA methylome.”

  • Maternal infections:

    “Inflammation, autoimmunity and maternal immune activation have long been suspected in the context of aberrant neurodevelopment and ASD risk.”

  • Exposure to pollutants, medications, alcohol

This was a current review with many 2015 and 2014 references. However, one word in the reviewers’ vernacular that’s leftover from previous centuries was “idiopathic,” as in:

“Idiopathic (nonsyndromic) ASD, for which an underlying cause has not been identified, represent the majority of cases.”

It wasn’t sufficiently explanatory to use categorization terminology from thousands of years ago.

Science has progressed enough with measured evidence from the referenced studies that the reviewers could have discarded the “idiopathic” category and expressed probabilistic understanding of causes. They could have generalized conditional origins of a disease, and not reverted to “an underlying cause has not been identified.”


Another word the reviewers used was “pharmacotherapeutic,” as in:

“The goal for the foreseeable future is to provide a better understanding of how specific genes function to disrupt specific biological pathways and whether these pathways are amenable to pharmacotherapeutic interventions.”

Taking “idiopathic” and “pharmacotherapeutic” together – causes for the disease weren’t specifically identified, but the goal of research should be to find specific drug treatments?

Of course reviewers from the Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago are biased to believe that “the design of better pharmacotherapeutic treatments” will fulfill peoples’ needs.

Are their beliefs supported by evidence? Without using drugs, are humans largely incapable of therapeutic actions such as:

  • Preventing epigenetic diseases from beginning in the prenatal environment?
  • Treating epigenetic causes for and alleviating symptoms of their own disease?

http://www.futuremedicine.com/doi/full/10.2217/epi.15.92 “Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder”