We first recognize familiar faces with our limbic system

This 2015 Belgian human study found:

“Medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated.

Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity.

[The researchers] isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals.”

A limitation of the study was, however:

“Behavioral data were acquired from only 11 subjects because of a technical error.”

http://www.pnas.org/content/112/35/E4835.full “Neural microgenesis of personally familiar face recognition”

A missed opportunity to study image-evoked emotional memories

This 2015 Ohio human study found that the:

“Hippocampus integrates distinct experiences, thereby providing a scaffold for encoding and retrieval of autobiographical memories.”

The researchers ignored the hippocampus’ role in emotional memories, although studies such as Emotional memories and out-of-body–induced hippocampal amnesia have shown emotional involvement to be desirable in order to properly study the hippocampus with human subjects.


The researchers missed quite a few good opportunities to advance science. Consider these opportunities:

  • All subjects were instructed during fMRI scans (here’s a video of one subject) to:

    “Try to remember the event depicted in each picture and relive the experience in their mind while viewing the photo for eight seconds.”

    The photos were taken during each subject’s day-to-day life by a smartphone hung around their neck. Following these instructions created an ideal situation for engaging the subjects’ emotions when they successfully remembered and relived. Although the experiment probably engaged the subjects’ emotions;

  • None of the subjects were asked anything that would lead the researchers to discover WHY the subjects remembered! The researchers had a perfect setup to make even a bare-bones inquiry, or to ask the subjects to immediately rate the emotional impact of each remembered event/relived experience, or to have them identify what emotions were evoked. But the researchers didn’t use any emotional measures to help understand how and why events were remembered or not.
  • Wouldn’t it also have potentially helped the subjects to become somewhat aware of how they processed memories, of how they felt with each remembered event/relived experience? They probably wouldn’t have remembered personally unimportant events, or forgotten personally significant ones.
  • “One subject recalled all of the items presented” and another had “very few unrecalled items.”

    Why? Weren’t the researcher interested in what was potentially the same between these two and different from the other subjects?


The researchers instead focused on rodent studies with statements such as:

“Validating the relevance of decades of rodent studies for human memory.”

They lost track of the reason rodent studies exist: to help humans.

In order for the research to help humans, move forward on the evolutionary scale, not backward! A rat or mouse can’t define and describe the emotional impact of an image of their life that evokes a memory.

http://www.pnas.org/content/112/35/11078.full “Human hippocampus represents space and time during retrieval of real-world memories”

Reflections on my four-year anniversary of spine surgery

At age 55, I found out that I’d suffered for maybe 45 to 50 years from a childhood injury, and I didn’t know anything about it. It still seems unbelievable to me that I was physically ill for decades before I received a diagnosis.

As explained to me by two surgeons, the cause of my spondylolisthesis between L5 and S1 was a sudden injury sometime between ages 5 and 10. Here’s a further explanation:

“In children, spondylolisthesis usually occurs between the fifth bone in the lower back (lumbar vertebra) and the first bone in the sacrum (pelvis) area. It is often due to a birth defect in that area of the spine or sudden injury (acute trauma).

Other causes of spondylolisthesis include bone diseases, traumatic fractures, and stress fractures (commonly seen in gymnasts). Certain sport activities, such as gymnastics, weight lifting, and football, put a great deal of stress on the bones in the lower back. They also require that the athlete constantly overstretch (hyperextend) the spine.”

I played a lot of baseball when I was a kid growing up in Miami. I didn’t suffer from a birth defect or bone disease, play football before I was a teenager, do gymnastics, or lift weights.

I don’t remember a specific “sudden injury (acute trauma)” per the above explanation. Maybe I incurred the acute trauma that started my spondylolisthesis sliding into bases playing baseball. Maybe I incurred it playing in the other rough-and-tumble activities that I did as a boy.


Please stop at the first hint of any pain that you feel while reading the rest of this post. I don’t want to cause you pain.

I re-experienced while in Primal Therapy a day when I was seven or eight years old. A most exhilarating day, one that filled me with light and joy.

What brought on my elevated mood? It was the day I finally ran faster than my father did, and he couldn’t catch me to give me a beating as I ran out of the house.

My father never beat me on the sidewalk, the street, or the front yard anyway. That would make the abuse public.

My father’s job was assistant principal/dean of boys at West Miami Junior High School. He whipped boys with a thick belt or paddled them daily as part of his job requirements.

My father kept a wooden paddle with holes in it at home. For me.

I don’t remember that my three siblings ever received a paddling or belting, although they were spanked. I’ve remembered while in Primal Therapy that my younger sister and brother were spanked for crying.

I re-experienced the dread of waiting (in an exact place with visual details), waiting for my father to come home to administer a spanking or belting or paddling to me for some “transgression” my mother observed. She had dozens of rules of conduct for her children.

I re-experienced my early childhood feelings that my father’s punishments depended more on my mother’s mood than on what I did.

I re-experienced my early childhood feelings that I didn’t deserve the beatings. I didn’t deserve any beatings, not one!

My father continued, though, until I was around age 11 or so. I’m sure that the beatings were a factor in how I felt at age 12:

Suicidal. Needing to escape from my life.

When I was a child, I needed my parents’ love.

I re-experienced many times while in Primal Therapy the overwhelming hopelessness, helplessness, worthlessness, and betrayal when the people I needed to love me were cruel to me instead.


My parents knew what they did was wrong. Neither one of them ever told me that, though.

My father never apologized for beating me so much before he died 19 years ago. Even before he retired, 17 years before he died, the Miami-Dade County public school system stopped him and the rest of their employees from spanking, whipping, beating, and paddling children.

What could he even tell me to take away those experiences?

  • That he beat me as a child because he himself was beaten as a child?
  • That he couldn’t help it?
  • That how he and my mother frequently went out of their way to help me along in life after my childhood somehow made up for the beatings?

I’m certain that my father was beaten as a child. I bring this up not as a defense for what he did, but as part of my history, too.

It wasn’t enough for my father’s mother to beat me while she was babysitting my siblings and me at our parents’ house. I re-experienced crying as a five-year old when I was required to go cut off palm fronds from the tree in front of our house for her to use as a switch, and bring them to her.

It was a mark of my grandmother’s cruelty that she threatened to beat me with a broom handle when I tried to not participate in my own torment. I re-experienced exact places of my legs where she switched me with the palm fronds, giving me even more when I cried during the punishment.


These wounds left scars that haven’t gone away.

Run your hand down your spine until you reach the top of your sacrum. That’s the area on which I had surgery four years ago, where I now have a titanium cage, replacement disc, and two rods to keep the area stable.

I received a lot of beatings pretty close to that area. Maybe my boyhood activities didn’t cause the “sudden injury (acute trauma).”


I write frankly about my parents because that’s my history: the realities of who they were.

And the realities of who I needed them to be.

I express it because getting well has to address reality.

From Dr. Arthur Janov’s book, Primal Healing, page 133:

“Another cognitive technique is to help the patient understand and forgive his parents. ‘After all, your parents did the best they could. They had a pretty tough childhood too.’ ‘Oh yes, I understand. They did have it tough and I do forgive’ comes forth from the left side. Still, of course, the right side is crying out its needs and its pain, and will go on with its silent scream for the rest of our lives.

There is no way around need.

‘Forgiveness’ is an idea that has no place in therapy.

We are not here to pardon parents; we are here to address the needs of patients, and what the lack of fulfillment did to them.

I regret to say that much of current therapy and particularly cognitive therapy is about a moral position; well hidden, couched in psychological jargon, but, at bottom, moralizing. The therapist becomes the arbiter of correct behavior.

After all, the therapist is trying to change the patient’s behavior toward some preconceived goal. That goal has a sequestered moral position.”

Words are neither the problem nor the solution

“Words are neither the problem nor the solution. They are the last evolutionary step in processing the feeling or sensation. They are the companions of feelings.

We cannot make progress on the third-line cognitive level alone. We can become aware of why we act the way we do but nothing changes biologically; it is like being aware of a virus and expecting the awareness alone to kill it. Our biology has been left out of the therapeutic equation.”

Janov’s Reflections on the Human Condition: On the Difference Between Abreaction and Feeling (Part 6/9).

Another factor in producing new brain neurons in the adult hippocampus

This 2015 New York rodent study provided further details on the production of new neurons in the adult hippocampus. The researchers found that a protein that regulated a glutamate receptor also:

“Significantly influences hippocampal neurogenesis and that both the proliferation and survival of newborn neurons are impaired in the absence.”

The study showed:

“The effect of Norbin [the protein] on neurogenesis is likely caused by a nonautonomous niche effect.

These results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.”

http://www.pnas.org/content/112/31/9745.full “Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice”

Emotionless brain research that didn’t deal with human reality

Are tasks you do at work and home never influenced by emotional content or contexts?

Does your ability to focus on a task always have nothing to do with your emotional state?

The researchers who designed this 2015 Boston human study acted as if both of your answers to these questions were “Yes” by stripping out any emotional content from their experiments. As a result, this study which purported to:

“Have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties”

couldn’t achieve anything near its goal.


This study included fMRI scans of subjects’ entire brains. Limbic system areas were in 3 of the 5 modules, and lower brain areas were in one.

Functional MRI signals depend on changes in blood flow that follow changes in brain activity. Given this study’s goal, did it make sense for researchers to design experiments that didn’t actively engage scanned areas of subjects’ brains?

It wasn’t all that difficult to include emotional content that could potentially contribute to the purported goal. This 1996 review described studies that developed varieties of emotional content with the same test type (Stroop) used. Presumably these approaches had made progress since 1996 incorporating emotional content in Stroop tests given to normal people, who were subjects in this study.

http://www.pnas.org/content/112/32/10020.full “Flexible brain network reconfiguration supporting inhibitory control”

How brain neurons remain stable when constantly stimulated

This 2015 UK rodent study provided details of how neurons in the hippocampus respond to stimuli. The researchers found that hippocampal neurons:

“Remain electrically stable when confronted with chronic increases in neuronal activity.”

Changes in electrical potential changed the initial segment of the neuron’s axon.

Synapses formed along the segment, and stayed in place while this highly-plastic segment moved along the axon. The location mismatch:

“Allows the GABAergic [producing gamma-Aminobutyric acid, an inhibitory neurochemical] synapses to strongly oppose action potential generation, and thus downregulate pyramidal cell excitability.”

The researchers also used the two antioxidants endogenous to humans, superoxide dismutase and glutathione, to supplement the culture medium.

http://www.pnas.org/content/112/31/9757.full “Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output”

Are a child’s genes the causes for their anxiety?

This 2015 Wisconsin macaque study was another attempt to justify the school’s continuing captivity of thousands of monkeys. The researchers performed a study that – if its experimental design was truly informative for helping humans – could have been done with humans.

A problem I saw in the news coverage was that the finding of:

“35 percent of variation in anxiety-like tendencies is explained by family history”

was attributed to genetics, with headlines such as “Anxious Brains Are Inherited, Study Finds.” The lead researcher encouraged this misinterpretation with statements such as:

“Over-activity of these three brain regions are inherited brain alterations that are directly linked to the later life risk to develop anxiety and depression.”

However, the researchers produced this finding by running numbers on family trees, not by studying genetic samples to assess the contributions of genetic and epigenetic factors!

The study’s “family history” correlation was different than finding an inherited genetic causation that wasn’t influenced by the subjects’ caged environments!

The study found:

“Metabolism within a tripartite prefrontal-limbic-midbrain circuit mediates some of the inborn risk for developing anxiety and depression.

The brain circuit that was genetically correlated with individual differences in early-life anxiety involved three survival-related brain regions. These regions were located in the brain stem, the most primitive part of the brain; the amygdala, the limbic brain fear center; and the prefrontal cortex, which is responsible for higher-level reasoning and is fully developed only in humans and their primate cousins.”


The 592 subjects were the human-equivalent ages of 3 to 12 years old. Primate brainstems and limbic systems are fully-developed BEFORE these ages.

The researchers skipped over potential evidence for the important contributions of epigenetic factors to “the later life risk to develop anxiety and depression” that change the studied brain areas during womb-life, infancy, and early childhood. Studies such as:

show:

  1. A developing fetus adapts to being constantly stressed by an anxious mother.
  2. When these adaptations persist after birth, they may present as physiological and behavioral maladaptations of the infant and young child to a non-stressful environment.
  3. Later in life, these enduring changes may be among the causes of symptoms such as the anxious overreactions the current study found.

http://www.pnas.org/content/112/29/9118.full “Intergenerational neural mediators of early-life anxious temperament”

Perpetuating the meme that rodent PTSD experiments necessarily apply to humans

This 2015 Texas A&M rodent study found:

“Propranolol administration dampened the stress-induced impairment in extinction observed when extinction training is delivered shortly after fear conditioning.”

The researchers were way off base in extrapolating this study to humans:

“Propranolol may be a helpful adjunct to behavioral therapy for PTSD, particularly in patients who have recently experienced trauma.”

Would National Institutes of Health Grant R01MH065961 money have been available without perpetuating the meme that rodent PTSD experiments necessarily apply to humans? Or are a priori findings necessary in order to get research funded?

In rodent studies such as this one, the origins of both the disease and the “cure” are all exerted externally. But humans aren’t lab rats. We can perform effective therapy that doesn’t involve some outside action being done to us.

Studies such as Fear extinction is the learned inhibition of retrieval of previously acquired responses make clear that extinction is equivalent to suppression. “Behavioral therapy for PTSD” that suppresses symptoms can’t be a “cure” for humans since the original causes for the symptoms aren’t treated.

Even if this study’s recommendation to administer a drug applied to humans, neither drugs nor “behavioral therapy for PTSD” address the underlying causes.

http://www.pnas.org/content/112/28/E3729.full “Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress”

Interruptions to the circadian cycle negatively affect memory consolidation

This 2015 German rodent study found:

“The control of sleep and memory consolidation may share common molecular mechanisms.”

Somewhat counter to the “Enhanced memory consolidation” in the study’s title, the researchers also found:

“Elevated IGF2 [insulin-related growth factor 2] signaling in the long term, however, has a negative impact on cognitive processing.”

The IGF2 finding was in genetically altered mice that had their circadian rhythm permanently disturbed, however. The study didn’t clearly determine the contribution of other factors that could have contributed to the cognitive decline.


The study traced fear memories induced by stress through the cerebrum to the anterior cingulate cortex and hippocampus parts of the limbic system.

Researchers have no problems studying emotional memories in these brain areas with rodents. In human memory experiments, however, emotional content is consistently excluded, as if none of our memories had anything to do with our feelings.

http://www.pnas.org/content/112/27/E3582.full “Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex”

A study on alpha brain waves and visual processing that had limited findings

This 2015 Wisconsin human study found:

“Forming predictions about when a stimulus will appear can bias the phase of ongoing alpha-band oscillations toward an optimal phase for visual processing, and may thus serve as a mechanism for the top-down control of visual processing guided by temporal predictions.”

The researchers measured delta (1-4 Hz), theta (4-7 Hz), alpha (9-13 Hz), and low beta (15-20 Hz) brain waves. Their findings applied only to the alpha band in their experimental tasks, which excluded emotional content.

Brain waves studies such as Are hippocampal place cells controlled by theta brain waves from grid cells? and Research that identifies the source of generating gamma brain waves established different experimental conditions that elicited brain waves in non-alpha frequency bands. Such studies may have been relevant to further explain this study’s negative findings.

Visual perception studies such as We are attuned to perceive what our brains predict will be rewarding and Our long-term memory usually selects what we pay closer visual attention to provided insight into possible causes for the observed effects. It may have provided additional findings if the researchers of this study were also interested in causal factors that affected visual processing.

Other studies on visual perception such as The amygdala is where we integrate our perception of human facial emotion provided reasons to not exclude emotional content in brain studies. The current study’s researchers claimed that they provided insights relevant to neurological disorders by stating:

“Because forming the appropriate sensory predictions can have a large impact on our visual experiences and visually guided behaviors, a mechanism thought to be disrupted in certain neurological conditions like autism and schizophrenia, an understanding of the neural basis of these predictions is critical.”

However, I didn’t see that the researchers provided such an understanding since their experimental designs excluded emotional content. I wonder what the reviewer saw that justified this Significance section statement.

http://www.pnas.org/content/112/27/8439.full “Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction”

Do scientists have to perpetuate memes in order to keep their jobs?

I was disgusted by this 2015 Korean human study.

Is the current state of science such that researchers won’t be funded unless there’s an implicit guarantee that their studies will produce politically correct findings? It seemed that the primary reason for the study’s main finding of:

“Neural markers reflecting individual differences in human prosociality”

was to perpetuate that non-causal, non-explanatory meme.

Per If research treats “Preexisting individual differences” as a black box, how can it find causes for stress and depression? it wasn’t sufficient in 2015 to pretend that there are no early-life causes for the observed behavior and fMRI scan results of the subjects. Such a pretense leads to the follow-on pretense that later-life consequences are not effects, but are instead, a “mystery” due to “individual differences.”

The researchers asserted:

“Our present findings shed some light on the mystery of human altruism.”

Weren’t the findings of the People who donated a kidney to a stranger have a larger amygdala 2014 study of extraordinary altruists big enough clues for these researchers to feature the amygdala in the fMRI scans?

The main experiment had the female, college student, right-handed subjects try to “reduce the duration of exposure to stressful noise.” Why weren’t brain areas that are especially susceptible to stress like the hippocampus featured in the fMRI scans?

The secondary reason for the study seemed to be to perpetuate the harmful “self-sacrifice = good, individuality = bad” meme.

The main reason this meme is harmful is that it condones a subset of people’s unconscious act outs. People are encouraged to avoid conscious awareness both of who they really are and of what drives their feelings, thoughts, and actions.

Despite not asking the subjects directly about either their motivations or their histories, these researchers asserted that the study demonstrated:

“The automatic and intuitive nature of prosocial motivation.”

What was largely observed were the subjects’ unconscious act outs, not some higher-order functions as the researchers mischaracterized them.

Similar to Who benefits when research promotes a meme of self-sacrifice? I suspect that a major motivation behind scientific justification for memes like the self-sacrifice promoted by this study is to rush people past what really happened in their lives.

I wonder what value we would place on the “social norms internalized within an individual” if we felt and honestly understood our real history.


This study and the Do you know a stranger’s emotional motivations for smiling? study had the same reviewer, and shared several of the burden-of-proof problems. Both studies demonstrated a lack of researcher interest in finding causes for the observed effects.

What was the agenda with these researchers and the reviewer? Why would the researchers glorify factors that cause difficulties when one tries to live a life of one’s own choosing?

http://www.pnas.org/content/112/25/7851.full “Spatial gradient in value representation along the medial prefrontal cortex reflects individual differences in prosociality”

Dopamine may account for differences in cognitive performance

This 2015 German human study found:

“Dopamine may account for adult age differences in brain signal variability.”

The researchers administered amphetamine to the subjects to boost their dopamine levels, and measured their cognitive performance on several working memory tests under fMRI:

“Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult..”

brain signal variability levels when on speed.

The order of the tests also influenced the results. Older adults who received amphetamine during the initial series of tests performed better on placebo during the second series of tests.


As is often done, the researchers focused on effects and not causes. I didn’t see questionnaires or investigation into possible historical or biological factors for reduced dopamine levels, leaving the researchers with age as the only correlated-but-not-causative explanation.

http://www.pnas.org/content/112/24/7593.full “Amphetamine modulates brain signal variability and working memory in younger and older adults”

How brains mature during critical periods

This 2015 German rodent study found:

“Once silent synapses are consolidated in any neural circuit, initial experience-dependent functional optimization and critical periods end.

Silent synapses are thought to be immature, still-developing excitatory synapses.”

The number of silent synapses related to visual processing was measured at ~50% at eye opening. Visual experience reduced this to 5% or less by adulthood in the study’s control group. Removing a protein in the subjects’ hippocampus silenced the synapses back up to ~50%, even in adults.

Critical periods are:

“Characterized by the absolute requirement for experience in a restricted time window for neural network optimization.

Although some functions can be substantially ameliorated after the CP [critical period], they are rarely optimally restored.”

Two human studies were cited on critical periods in second-language and musical skills development, Sensitive periods in human development: Evidence from musical training (not freely available).

The researchers generalized their findings as:

“Experience-dependent unsilencing of silent synapses constitutes an important general maturational process during CPs of cortical development of different functional domains and suggest an interplay with inhibitory circuits in regulating plasticity.”

http://www.pnas.org/content/112/24/E3131.full “Progressive maturation of silent synapses governs the duration of a critical period”

Unconscious stimuli have a pervasive effect on our brain function and behavior

This 2015 Swedish human study, performed at the institution that awards the Nobel Prize in Physiology or Medicine, found:

“Pain responses can be shaped by learning that takes place outside conscious awareness.”

Images of neutral male faces were used as conditioning stimuli which the subjects were trained to associate with levels of pain.

The concluding sentence of the study:

“Our results demonstrate that conscious awareness of conditioned stimuli is not required during either acquisition or activation of conditioned analgesic and hyperalgesic responses, and that low levels of the brain’s hierarchical organization are susceptible for learning that affects higher-order cognitive processes.”

From the study’s abstract:

“Our results support the notion that nonconscious stimuli have a pervasive effect on human brain function and behavior and may affect learning of complex cognitive processes such as psychologically mediated analgesic and hyperalgesic responses.”


Principles of Dr. Arthur Janov’s Primal Therapy related to this study’s findings are:

  • Experiences associated with pain can be remembered below our conscious awareness.
  • Unconscious memories associated with pain, when activated, have varying forms of expression as they pass up through our levels of consciousness.
  • These memories, when activated, have effects on our feelings, thinking, health, brain functioning, and behavior that are usually below our conscious awareness.

I’ll use one of Dr. Janov’s 2011 blog posts, On Being Alone, to show an example of how the study’s findings of:

  • “Conscious awareness of conditioned stimuli is not required during either acquisition or activation of conditioned..responses” and
  • “Nonconscious stimuli have a pervasive effect on human brain function and behavior”

are seen through the lens of Primal Therapy:

Unconscious memories associated with the pain of being left alone may be stored, especially in the developing brain, in our lower brain areas below conscious awareness: “Pain of being left alone a lot in childhood and infancy, added to the ultimate aloneness right after birth when no one was there for the newborn. That imprints a primal terror where a naïve, innocent and vulnerable baby has no one to lean on, to be held by, to snuggle up to, to be comforted. To be loved.”
As we develop, the cumulative memories associated with the pain of being left alone, when activated, may affect our feelings, thoughts, and behavior: “And that also has multiple meanings: no one wants me; there is no one there for me: no one wants to be with me; I have no love and no one who cares. One races to phone others so as not to feel alone. One runs from the feeling and struggles mightily not to be alone. Or, depending on earlier events one stays alone out of that same feeling. These are by and large the depressives.”
Although memories associated with the pain of being left alone may be formed in our early lives, they remain decades later, and can be activated below our conscious awareness: “When something in the present occurs which is similar to an old feeling “I am all alone and no one wants me,” the old feelings are triggered off..and the whole feeling rises toward conscious/awareness where it must be combated. Either the person wallows in the feeling and is overwhelmed by it even when she doesn’t even know what “it” is. Or the compounded feeling drives the act-out, forcing the person into some kind of social contact.”

A PNAS commentary on the study stated:

“Pain, analgesia, and hyperalgesia represent higher-order cognitive functions.”

and attempted to draw conclusions from this reasoning.

The commentator was incorrect regarding pain. I didn’t see where this study showed or even postulated that pain was always a higher-order cognitive function. In fact, the researchers cited a sea slug study and stated:

“It would not be surprising if vestiges of simpler nonconscious processes would also be operative under some conditions.”

Maybe it would have provided clarifications if the researchers specifically defined “low” and “higher” used throughout the study in statements such as the closing sentence:

“Low levels of the brain’s hierarchical organization are susceptible for learning that affects higher-order cognitive processes.”

http://www.pnas.org/content/112/25/7863.full “Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness”


This post has somehow become a target for spammers, and I’ve disabled comments. Readers can comment on other posts and indicate that they want their comment to apply here, and I’ll re-enable comments.