Two 2024 papers that cited Precondition your defenses with broccoli sprouts, starting with an in vitro study of influences on auditory cell function:
“Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of age-related hearing loss (ARHL), there are no effective preventive approaches for ARHL.
We focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality.

This is the first report to indicate that the inactivation of TFEB directly causes oxidative stress (NaAsO2)-induced premature auditory senescence and SASP induction via decreases in autophagic flux and lysosomal dysfunction, with a lowered pH at the transcriptional level and, as a consequence, ROS production with decreasing mitochondrial quality in auditory cells. The activator of TFEB might have a pivotal antiaging effect in the inner ear.”
https://www.nature.com/articles/s41420-024-02139-4 “Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO2-exposed auditory cells”
These researchers used exposure concentrations and durations that had no relevance to humans. Human irrelevance made it difficult to assess the above graphic that shows both TFEB activation and inactivation as stress-related. “No effective preventive approaches for ARHL” was asserted as a given, although “TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL” was also stated.
Just like the two papers in Eat broccoli sprouts for your hearing, preconditioning’s importance wasn’t investigated. So this study didn’t have findings about how mild TFEB activation or inactivation might precondition auditory cells for other stress that might damage hearing.
Next is a review of muscle regeneration and autophagy:
“Satellite cells, also known as muscle stem cells when activated, are essential for muscle repair. These adult stem cells typically remain in a dormant state. In response to tissue injury, these cells are rapidly activated and divided to generate new stem cells, which proliferate to form myoblasts, which further differentiate into myocytes to repair damaged muscle tissue. However, muscle regeneration can be significantly impaired under various conditions due to dysfunctional satellite cell activity.
mTORC1 activity is suppressed during amino acid starvation, leading to autophagy activation. Under these conditions, TFEB, TFE3, and MITF translocate to the nucleus, where they enhance the transcription of genes involved in autophagy and lysosomal function. When nutrients are abundant, mTORC1 suppresses autophagy. This inhibition ensures that resources are directed toward growth and proliferation rather than cellular recycling.
Chronic injuries are typically associated with sustained metabolic or oxidative stress, leading to prolonged or impaired autophagy. While autophagy serves a compensatory and beneficial role in acute injuries, its role in chronic muscle diseases is more complex. On the one hand, autophagy alleviates oxidative stress and mitigates aging. On the other hand, dysregulated autophagy may contribute to muscle fibrosis and loss of muscle mass.
The function of autophagy varies across different stages of satellite cell activity. Autophagy:
- Maintains cellular homeostasis by clearing damaged organelles.
- Preserves the number of satellite cells by antagonizing apoptosis.
- Sustains the quiescence of satellite cells by reducing reactive oxygen species (ROS).
- Promotes the activation of satellite cells by supplying energy.
- Facilitates the differentiation of satellite cells by mitochondrial remodeling.”

https://www.mdpi.com/1422-0067/25/22/11901 “Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective”
I’ve curated a few other of the 110 papers that cited the 2020 “Sulforaphane activates a lysosome-dependent transcriptional program to mitigate oxidative stress” over the years, to include:
Sulforaphane’s effects on autism and liver disease;
Bridging Nrf2 and autophagy; and
Eat broccoli sprouts to maintain your cells.