Where do our beliefs about our children come from? An autism example

A 2015 case study by Ohio physicians highlighted:

“Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms.

These symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians.

The case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction.”

I was somewhat taken aback by the Abstract and Introduction statements:

“All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized.

This form of ASD is known to be heritable, as are all forms of ASD, despite the previous belief to the contrary, though the mechanisms of inheritance, both genetic and epigenetic, are not well characterized.”

The definition of heritable as used was “able to be passed from parent to child before birth.” The reference provided was a 2014 French review Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms.

I didn’t see the “known to be heritable” phrase mentioned in the referenced review. However, I also didn’t see anything stated in the review or cited from its 217 references that disproved this phrase.


I shouldn’t have been surprised by “despite the previous belief to the contrary” in the above quotation. I’d guess that the physicians frequently encountered parents who needed such beliefs when faced with their child’s condition.

A relevant hypothesis of Dr. Arthur Janov’s Primal Therapy is: a major function that our cerebrums have evolutionarily adapted is to use ideas and beliefs to repress pain and make us more comfortable.

I value this inference as an empathetic method of interpreting people’s behaviors and expressions of thoughts and feelings.

When a “known to be heritable” phrase can unleash pain, it likely won’t be understood in its appropriate context. Among the physicians’ challenges was a barrier that kept the parent’s pain from being felt – the belief.

http://innovationscns.com/autism-in-the-son-of-a-woman-with-mitochondrial-myopathy-and-dysautonomia-a-case-report/ “Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report”

Epigenetics is gnarly and dynamic

From one of the articles in a freely-available Genome editing publication:

“Genomic studies frequently point to the important role that the full collection of epigenetic patterns in a cell nucleus has in complex diseases such as diabetes or schizophrenia, notes Tim Reddy, a genomics researcher also at Duke University. “In a lot of these cases, it really seems to be not a DNA mutation that impacts the protein sequence, but a change in how genes are regulated.”

Reddy says that he was surprised at the extent to which the expression of a target gene increased when a histone in an enhancer region was acetylated. “That result started to convince me that the acetylation of histones may be a direct cause of gene activation.”

Because of its simplicity and versatility, CRISPR–Cas9 opens up an opportunity. “If we want to target a region in the genome, we can have that targeting molecule here tomorrow for five dollars,” says Reddy.”


Reading this article and several of the publication’s other articles revealed the widespread belief that the goal of research should be to explain human conditions by explaining the actions of molecules.

One problem caused by this preconception is that it leads to study designs and models that omit relevant etiologic evidence embedded in each of the subjects’ historical experiences.

http://www.nature.com/nature/journal/v528/n7580_supp/full/528S12a.html “Epigenetics: The genome unwrapped”

Increased epigenetic brain capacity is an evolved human characteristic

This 2015 George Washington study compared human and chimpanzee brain attributes to find:

“The morphology of the human cerebral cortex is substantially less genetically heritable than in chimpanzees and therefore is more responsive to molding by environmental influences.”

From the news coverage:

“We found that the anatomy of the chimpanzee brain is more strongly controlled by genes than that of human brains, suggesting that the human brain is extensively shaped by its environment no matter its genetics.

Though our findings suggest that the increased plasticity found in human brains has many benefits for adaptation, it is also possible that it makes our brain more vulnerable to many human-specific neurodegenerative and neurodevelopment disorders.”

The study demonstrated an aspect of how natural selection of species leading to Homo sapiens – after humans and chimpanzees shared a common ancestor – favored our increased capacity to adapt to our environments.

http://www.pnas.org/content/112/48/14799.full “Relaxed genetic control of cortical organization in human brains compared with chimpanzees”

A problematic study of DNA methylation in frontal cortex development and schizophrenia

This 2015 Baltimore human study found:

CpGs that differ between schizophrenia patients and controls that were enriched for genes related to development and neurodifferentiation.

The schizophrenia-associated CpGs strongly correlate with changes related to the prenatal-postnatal transition and show slight enrichment for GWAS [genome-wide association study] risk loci while not corresponding to CpGs differentiating adolescence from later adult life.

Only a fraction of the illness-associated CpGs, 4.6%, showed association to nearby genetic variants in the meQTL [methylation quantitative trait loci] analysis, further suggesting that these findings may be more related to the epiphenomena of the illness state than to the genetic causes of the disorder.

These data implicate an epigenetic component to the developmental origins of this disorder.”

It wasn’t surprising in 2015 to find “an epigenetic component to the developmental origins of this disorder.” From the supplementary material:

“Diverse chromatin states suggest vastly different epigenetic landscapes of the prenatal versus postnatal human brain.

Approximately half of the CpGs had DNAm [DNA methylation] levels positively correlated with expression across the lifespan, and half had DNAm levels negatively correlated.

These results suggest that many of the epigenetic changes occurring between prenatal and postnatal life in prefrontal cortex manifest in the transcriptome, and that the directionality of association is not strictly linked to the location of the CpG or DMR [differentially methylated region] with respect to an annotated gene.

Diagnosis-associated CpGs were relatively small compared with those differentially methylated between fetal and postnatal samples.”


The studied brain area was limited to the dorsolateral portion of the prefrontal cortex, which isn’t mature in humans until we’re in our late teens/early twenties.

The researchers ignored brain areas that were fully developed or further along in development – such as the limbic system – during “the prenatal-postnatal transition.”

The researchers intentionally blinded themselves from discovering “many of the epigenetic changes occurring between prenatal and postnatal life” possibly associated with schizophrenia and these more-developed brain areas.

Where’s the evidence that the developmental origins of schizophrenia have no associations with brain structures whose development closely approximates their lifelong functionalities at birth?


The study’s limitations didn’t hamper researcher hubris in a press release for a site that touts business news, such as:

“This conclusion, while perhaps not the final verdict on the subject, is hard to resist given this remarkable evidence”

Did the spokesperson really understand GWAS? Or was he trying to exploit public ignorance of GWAS?

There’s a scientist’s view of GWAS at What do GWAS signals mean? that better puts this study’s findings into perspective. When understanding GWAS at an individual level, it should also be acknowledged that Genetic statistics don’t necessarily predict the effects of an individual’s genes.

http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4181.html “Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex” (not freely available). Use the full study link from the above-mentioned press release.

Trapped, suffocating, unable to move – a Primal imprint

“The malady of needing to move constantly: organizing trips, making reasons to go here and there, and in general, keeping on the move..below all that movement is a giant, silent scream.

The price we pay is never knowing our feelings or where they come from.

We have the mechanism for our own liberation inside of us, if we only knew it.

When we see constant motion we understand, but we never see the agony. Why no agony? Because it is busy being acted-out to relieve the agony before it is fully felt.”

http://cigognenews.blogspot.com/2015/11/epigenetics-and-primal-therapy-cure-for_30.html “The Miracle of Memory – Epigenetics and Primal Therapy: The Cure for Neurosis (Part 13/20)”