Do strong emotions cause our brain hemispheres to interact more closely?

This 2015 human/macaque study found:

“The functional coordination between the two hemispheres of the brain is maintained by strong and stable interactions.

These findings suggest a notable role for the corpus callosum in maintaining stable functional communication between hemispheres.”

The human subjects were asked to:

“Generate four negative autobiographical memories and create word cues that reminded them of each event. Participants then underwent a 6-min IR fMRI scan during which they were cued with the words they had created to recall the two most negative autobiographic memories generated outside the scanner.”

However, the study’s supplementary material didn’t address why the researchers used this particular technique.

Does recalling strong emotional memories that engage our limbic systems cause our brain hemispheres to interact more closely than do cerebral exercises?

This study demonstrated that including emotional content in brain studies was essential. It may have provided additional information had the researchers also used the two least-negative emotional memories.

As noted in Agenda-driven research on emotional memories, one hypothesis of Dr. Arthur Janov’s Primal Therapy is that recalling an emotional memory engages one’s brain differently than does re-experiencing an emotional memory. Asking the subjects to attempt to re-experience the two least-negative emotional memories may have provided data relevant to the study.

I didn’t understand why macaques were used as subjects. The researchers didn’t provide any tasks for the monkeys during the scans. The information this study gained only duplicated other studies.

Also, the monkeys were anesthetized throughout the experiments. An assumption that wasn’t addressed: fMRI scan data on anesthetized macaques provided comparable evidence to fMRI scan data on normal non-anesthetized humans who were recalling emotional memories?

Did the researchers use macaques simply because they were available? “Stable long-range interhemispheric coordination is supported by direct anatomical projections”


Chaos – not balance – and competition for resources are the natural order

This 2015 Amsterdam/New Zealand/Cornell shore-life study found:

“Species abundances in natural ecosystems may never settle at a stable equilibrium.

Species in one of the world’s oldest marine reserves showed chaotic fluctuations for more than 20 years. The species replaced each other in cyclic order, yet the exact timing and abundances of the species were unpredictable.

Our findings provide a field demonstration of nonequilibrium coexistence of competing species through a cyclic succession at the edge of chaos.

Our findings show that natural ecosystems can sustain continued changes in species abundances.”

The University of Amsterdam also participated in a 2013 study Evolution of microbial markets where evolutionary biologists studied microbes. Their related findings included:

“Cooperative interactions between individuals of different species.

Strategies important for microbes to optimize their success in potential biological markets:

  • (i) avoid bad trading partners;
  • (ii) build local business ties;
  • (iii) diversify or specialize;
  • (iv) become indispensable;
  • (v) save for a rainy day; and
  • (vi) eliminate the competition.”

A 2015 study How a well-adapted immune system is organized (the *.pdf file is linked because the html has errors) had a related finding that applied to our body’s immune system. The researchers found that the primary reason why each of our immune systems is unique is due to the effect of:

“Competition between receptor clones.

Not a biologically implausible centralized mechanism distributing resources system-wide.

The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from diverse pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections.

Competitive dynamics can allow the immune repertoire to self-organize into a state that confers high protection against infections.”

Chaos and competition for resources are facts of life observed within ourselves and in nature from ocean life down to the microbe level.

Why are we often presented – as a fact of life – that what’s natural is for all aspects of our lives to be in balance? Emotional, economic, social, intellectual – you name it, we’re told that the natural model is one of “stable equilibrium.”

Two hypotheses of Dr. Arthur Janov’s Primal Therapy are relevant:

Trying for closure, though, becomes an act-out – a temporary fulfillment of a substitute need. But the underlying need remains unsatisfied, and soon drives further act-outs. Balance is never achieved.

With this viewpoint, can you see how behavior like the following shows the internal state of the actor as they attempt to thwart the natural reality of the situation?

  • A person in authority who demands that people cease their competition for a resource and instead, accept what the authority figure determines is fair and balanced. An example is limiting supplies with price controls after a disaster.
  • A person who disrupts cooperative behavior that provides a solution for the cooperators’ needs/wants and instead, interposes themselves in a directed solution. An example is requiring licenses for cooperative childcare.
  • A person who insists that peoples’ responses to chaos to form an optimal adaptation cease, and instead, conform to some other responses. An example is prohibiting free movement after a disaster.

It reveals even more about the internal states of people that the above examples become codified. Children are taught that the natural and solely acceptable way to behave is in accordance with these unnatural solutions.

There are some signs that unnatural solutions in society can be reversed. For example, here is a 2013 article about a UK village that benefited from removing all of its traffic signals and reverting to the natural order of human cooperation and competition.

At the individual level, though, it’s up to each one of us to recognize and reverse our unnatural states. We and the people around us will be pleased when we and they are no longer adversely affected by our unconscious act-outs that are driven by our internal states. There’s enough natural chaos without adding more with act-outs.

Our internal systems will suffer damage, for example, when our unconscious act-out is to be busy, always doing something, and we can’t relax. Stress adversely affects our internal systems until we understand and reverse the driving unnatural states. “Species fluctuations sustained by a cyclic succession at the edge of chaos”

Do popular science memes justify researchers’ cruelties to monkeys?

This 2015 Oxford study of 38 humans and 25 macaques drew correlations of brain activities between the two species. The study title included buzzwords such as “reward” and “decision making” and the study focused on the ever-popular “frontal cortex.”

Humans and macaques are separated by 25 million years of evolutionary adaptations and developments. Studies done with macaque subjects don’t automatically have human applicability.

Was a major reason for the study’s comparisons to provide justifications for keeping macaques as study subjects? Accepting these justifications and going along with the popular memes would ease the way for whatever cruelties researchers want to inflict on our primate relatives. “Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex”

A mixed bag of findings about oxytocin, its receptor, and autism

This 2014 Stanford human study found:

“No empirical support for the OXT [oxytocin] deficit hypothesis of ASD [autism spectrum disorder], nor did plasma OXT concentrations differ by sex, OXTR [oxytocin receptor] SNPs [single nucleotide polymorphisms], or their interactions.”

Apparently, there was a:

“Prevalent but not well-interrogated OXT deficit hypothesis of ASD.”

The researchers followed up this worthwhile finding with three weak findings. The first, as stated by one of the study’s lead researchers, was:

“It didn’t matter if you were a typically developing child, a sibling or an individual with autism: Your social ability was related to a certain extent to your oxytocin levels.”

The second weak finding was that, regarding OXTR SNPs:

“The minor allele of rs2254298 predicted global social impairments on the SRS [Social Responsiveness Scale] and diagnostic severity on the ADI-R [Autism Diagnostic Interview-Revised]. In contrast, the major allele of rs53576 predicted impaired affect recognition performance on the NEPSY [A Developmental NEuroPSYchological Assessment].”

This was at odds with other relevant research, leading the researchers to state:

The functional significance of these two intronic variants remains unknown.”

The third weak finding irked me:

“Plasma OXT concentrations were highly heritable.”

because the researchers didn’t attempt to differentiate the contribution of the environment for the observed blood oxytocin levels, as did the similar How epigenetic DNA methylation of the oxytocin receptor gene affects the perception of anger and fear study.

I wonder what the reviewer’s feedback was about these weak findings. Did he make the researchers insert specific language into the lengthy paragraph about the study’s limitations, or did he give them a pass? “Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder”

Do our unique visual perceptions arise from brain structural differences?

This 2014 UK/German human study involved fMRI scans of the subjects inferior temporal cortex while viewing images:

“Brain representational idiosyncrasies accessible to fMRI are expressed in an individual’s perceptual judgments.

We found evidence for an individually unique representation predictive of perceptual idiosyncrasies in hIT [human inferior temporal cortex] (but not in early visual areas) and for personally meaningful (but not for unfamiliar) objects.”

Citing other studies, the researchers said:

“The size of primary visual cortex varies across individuals by a factor of about 2.5.

Although other areas might vary by smaller factors, many parts of the brain, including cortical and subcortical structures, show gross anatomical variation across individuals that is predictive of cognitive and behavioral differences.”

The researchers asserted:

“Functional differences as reported here ultimately must arise from differences in the physical structure of each individual brain.”

However, no evidence was provided for this assertion.

The researchers acknowledged this lack of evidence, but in a way that required further evidence:

“Our study demonstrates individual differences in high-level semantic representations but cannot address their structural basis. Our current interpretation is that the representational idiosyncrasies might arise from the microstructural plasticity of cortex, which is driven by individual experience.”

The researchers’ assertion beyond the study’s supporting data was at best a statement of their goal. Further, their bias to focus on the inferior temporal cortex area of the cerebrum led them to not investigate other areas of the brain that may have been involved with the “personally meaningful (but not for unfamiliar) objects” finding, such as the subjects’ limbic systems.

I hope that researchers won’t think that their research is complete when they reach their goal of finding “differences in the physical structure of each individual brain.” It would be far more informative to understand the causes for these effects. “Unique semantic space in the brain of each beholder predicts perceived similarity”

Separating genetic from environmental factors when assessing educational achievement

This 2014 UK study of identical and fraternal twins found that an average of 62% of the differences among their scores on a significant test given at age 16 were due to genetic factors:

“Genetic influence is greater for achievement than for intelligence, and other behavioral traits are related to educational achievement largely for genetic reasons.”

However, the “genetic reasons” term didn’t mean that the researchers actually took genetic samples. From one news article:

“Identical twins share 100 percent of their genes while non-identical twins share just 50 percent of their genes. Because these sets of twins share the same environment, the scientists were able to compare identical and non-identical twins to estimate the relative contributions of genetic and environmental factors.”

This estimating method produced an artificial divide between genetic and environmental factors. Identical twins start out sharing 100% of their genes, but then their genes become expressed differently – often because of environmental factors – to produce unique individuals even before birth.

The sets of identical twins were definitely not the 100% same genetic makeup between themselves at age 16 as they were at conception, and that assumption was the foundation of the researchers’ estimating method.

The researchers didn’t provide evidence that “genetic reasons” were causal factors to the stated extent. Although the researchers’ estimating method’s numbers may have indicated that the method’s results were valid, that didn’t necessarily mean that the reality of genetic and epigenetic influences on the subjects were represented to the stated precision by the results.

The weather analogy expressed on my Scientific evidence page applies to this study’s methods:

“We can think about what we mean by evidence. For example, that when you see dark storm clouds overhead, that’s strong evidence that it’s about to rain. If you smell a certain scent, that’s maybe weak evidence that it’s about to rain. And if we see the dark storm clouds and then we smell the scent, the evidence doesn’t get weaker: if anything, it gets stronger.

But P-values in a circumstance like that, where you have a very small P-value in one dataset and a not-so-small P-value in a second dataset, you put the data together and the P-value will tend to sort of average.

So the P-value is not behaving like evidence.”

Better methods of estimating “the relative contributions of genetic and environmental factors” are available with genetic sampling. One way is to measure the degree of DNA methylation of genes as did:

The study and its news coverage were full of politically-correct buzzwords – for example, the researchers’ statement:

“The results also support the trend in education toward personalized learning.”

This “personalized learning” is a teacher not telling a student:

“You’re doing poorly at math. You need to pay attention in class and do the homework.”

but instead saying:

“You have a different learning style. We’ll tailor the math lessons to your style.”

The funniest thing I saw in the study’s news coverage was this one where someone argued that the researchers were wrong and that they needed educational psychologists on their staff to interpret the data. Guess the profession of the arguer! “The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence”

People who donated a kidney to a stranger have a larger amygdala

This 2014 Georgetown study was of people who had donated a kidney to a stranger. The study found that the subjects had a larger right amygdala part of their limbic systems:

“Our results support the possibility of a neural basis for extraordinary altruism.

In sum, our findings suggest that individuals who have performed an act of extraordinary altruism can be distinguished from healthy controls by increased right amygdala volume, as well as heightened responsiveness in right amygdala to fearful facial expressions, which may support enhanced recognition of these expressions.”

The researchers stopped short of causal explanations. They stated in the study’s abstract that:

“Individual variation in altruistic tendencies may be genetically mediated”

but didn’t develop any evidence to support this statement.

It would have been within the scope of the study had the researchers continued on to examine:

  • What may have happened in the subjects’ lives to possibly cause their neurobiological and psychological attributes?
  • What were the causes for the subjects’ extreme altruistic behavior?
  • Were these the same causes for their larger, more sensitive amygdala?

An accompanying PNAS commentary from a Harvard researcher made other points. However, the author showed his biases that the cerebrum rules human behavior with an out-of-left-field question at the end of a paragraph in which he developed specious reasoning.

The commentator was completely off base when he stated:

“Could it be that extraordinary altruists such as Maupin [a study participant] and the 19 individuals studied by Marsh et al. [the researchers] are special, not only because of how they feel when they see people in distress, but because of how they think?”

I don’t imagine that the brilliant commentator’s attempt to upstage the study’s subjects and put the spotlight on himself for some brilliant idea was much appreciated by anyone involved.

The amygdala is the central hub of a person’s limbic system. The study’s findings had very little to say about the subjects’ cerebral activity – thinking.

To postulate that the researchers missed that there was something different about the subjects’ thinking was out of touch with the realities of both the researchers’ scientific bases and the subjects. It’s another example of the current research mindset/social meme of cerebral dominance. “Neural and cognitive characteristics of extraordinary altruists”