One way that an infant unconsciously knows the emotions of the humans in their environment

This 2014 human study found one way that an infant unconsciously recognized the emotions of the humans in their environment:

“The current study provides neural evidence for the unconscious detection of emotion and gaze cues from the sclera in 7-mo-old infants.

Wide-open eyes, exposing a lot of white, indicate fear or surprise. A thinner slit of exposed eye, such as when smiling, expresses happiness or joy.”

The basis for finding that the subjects’ responses were unconscious was that the researchers determined that displaying images of eyes for 50 milliseconds fell below the threshold of infants’ conscious awareness.

http://www.pnas.org/content/111/45/16208.full “Unconscious discrimination of social cues from eye whites in infants”

We pay attention to the present through the windows of perception that we’ve developed from our past

My paraphrase of the 2013 study’s findings:

  • We pay attention to the present through the windows of perception that we’ve developed from our past;
  • The rest of the world is blocked by our consciousness’ perceptual thresholds.

It was good to read an attention study that didn’t zap the subjects’ brains.

http://www.pnas.org/content/111/4/E417.full “Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception”

Can psychologists exclude the limbic system and adequately study awareness and social cognition?

This 2014 Princeton human study was proof that cognitive researchers are stuck in the cerebrum. That and gadgets.

The researchers didn’t measure limbic system or lower brain areas, yet from their use of cartoon faces and magnetically zapping their subjects’ brains they proclaimed:

“The findings suggest a fundamental connection between private awareness and social cognition.”

For just one example of the gross omissions of the study’s design, look at the limbic system’s part in “social cognition” for The amygdala is where we integrate our perception of human facial emotion.

And it’s a very limited scope of “private awareness” that excludes conscious awareness of what’s in our own feeling, instinctual, and impulsive levels of consciousness.

http://www.pnas.org/content/111/13/5012.full “Attributing awareness to oneself and to others”


This post has somehow become a target for spammers, and I’ve disabled comments. Readers can comment on other posts and indicate that they want their comment to apply here, and I’ll re-enable comments.

Problematic research: If you don’t feel empathy for a patient, is the solution to fake it?

If you don’t experience empathy for another person, this 2014 Harvard study showed how to use your cerebrum to manipulate your limbic system into displaying a proxy of empathy.

Is this what we want from our human interactions? To have a way to produce an emotion the same way that an actor would as they read their lines?

How to finesse the effect of “no empathy” was the focus. Because these researchers didn’t define a lack of genuine empathy as a symptom of a fundamental problem, they absolved themselves from investigating any underlying causes.

Nice trick in the academic world.


In the real world, in which we are feeling human beings, what may be a cause of no empathy?

Let’s say that someone is in a position that helps people. They have daily encounters where they may be expected to be empathetic, but they seldom have these feelings for others.

One hypothesis of Dr. Arthur Janov’s Primal Therapy is this condition’s origin may be that in the past, a person needed help as a matter of survival, and they weren’t helped. Their unconscious memories of being helpless impel them to act out being helpful in their current life.

This person’s frequent reaction to any hint in the present of the agony of not receiving help back when they desperately needed it is to act out what they needed to have done back then. Helping others also gives them momentary distraction from such painful memories, but any relief is transitory. So they repeat the process.

Let’s say that unconscious needs pressed them into making a career choice of actively helping people. They’re usually too caught up in their own thoughts and feelings and behavior, though, to sense feelings of the people they’re helping.

Something isn’t right, but what’s the problem? They see indicators such as: their actions that should feel fulfilling aren’t fulfilling, they seldom feel empathy, and so on.


Primal Therapy allows patients to therapeutically address origins of such conditions. A symptom such as lack of empathy for others will resolve as historical pains are ameliorated.

Or we can do as this study suggested: produce an inauthentic display – and thereby ignore the lack of empathy as a symptom – and never address causes of no empathy.

http://www.pnas.org/content/111/12/4415.full “Episodic simulation and episodic memory can increase intentions to help others”

Our early experiences are maintained and unconsciously influence us for years, if not indefinitely

This 2014 Montreal study provided more evidence of critical periods during human development:

“Clearly illustrates that early acquired information is maintained in the brain and that early experiences unconsciously influence neural processing for years, if not indefinitely.

We show that internationally adopted children (aged 9–17 years) from China, exposed exclusively to French since adoption (mean age of adoption, 12.8 mo), maintained neural representations of their birth language despite functionally losing that language and having no conscious recollection of it.

We show that neural representations are not overwritten and suggest a special status for language input obtained during the first year of development.”


YES! GIVE US MORE STUDIES LIKE THIS ONE!

http://www.pnas.org/content/111/48/17314.full “Mapping the unconscious maintenance of a lost first language”

Rebooting the brain with anesthesia: Implications for Primal Therapy and evolution

Here are some paragraphs from a 2013 summary article of 105 studies entitled Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia:

“The emergence of consciousness (from anesthesia) (as judged by the return of a response to command) was correlated primarily with activity of the brainstem (locus coeruleus), hypothalamus, thalamus, and anterior cingulate (medial prefrontal area). Surprisingly, there was limited neocortical involvement that correlated with this primitive form of consciousness.

In the sleep study, midline arousal structures of the thalamus and brainstem also recovered function well before cortical connectivity resumed. Thus, the core of human consciousness appears to be associated primarily with phylogenetically ancient structures mediating arousal and activated by primitive emotions, in conjunction with limited connectivity patterns in frontal–parietal networks.

The emergence from general anesthesia may be of particular interest to evolutionary biology, as it is observed clinically to progress:

  1. from primitive homeostatic functions (such as breathing)
  2. to evidence of arousal (such as responsiveness to pain or eye opening)
  3. to consciousness of the environment (as evidenced by the ability to follow a command)
  4. to higher cognitive function.

Regarding ontogeny of H. sapiens, peripheral sensory receptors are thought to be present from 20 wk of gestation in utero. The developmental anlage of the thalamus is present from around day 22 or 23 postconception, and thalamocortical connections are thought to be formed by 26 wk of gestation. Around the same time of gestation (25–29 wk), electrical activity from the cerebral hemispheres shifts from an isolated to a more continuous pattern, with sleep–wake distinctions appreciable from 30 wk of gestation.

Both the structural and functional prerequisites for consciousness are in place by the third trimester, with implications for the experience of pain during in utero or neonatal surgery.


I recently came out of anesthesia after being anesthetized for three hours during rotator cuff surgery. I felt pain, and went into a primal reliving of a painful memory.

I interpret the event as a reliving of my birth experience because of the following:

  • The beginning point was complete anesthetization as it was at my birth. My mother was completely anesthetized, so I, weighing less than one twentieth of her, was also completely anesthetized.
  • I felt a great urge and impulse to “get out” as it was at my birth. The attending nurse told me the next day that she called over another person to help her restrain me in the post-op chair.
  • I had a great need for oxygen and started breathing rapidly as it could have been at my birth. The nurse told me the next day that she was already giving me oxygen, and per the monitors, I didn’t need more oxygen.
  • I had to frequently “spit up” as it could have been at my birth. There was nothing in my current situation to cause me to expectorate.
  • My lower brain and limbic system were in control, as I thrashed, cried and moaned. I probably used primarily the same brain areas as what were the developed parts of my brain at birth.

The attending nurse told me the next day when I called her that she followed the established protocol, which was to get me out of the experience. She intentionally distracted me away from my pain. I was instructed to sit still, to think of some place pleasant, and to calm down.

I heard her as though she was at the other end of a tunnel at first, and then started to comply as I regained cognitive awareness.


I understand how such a powerful event could present a danger to a patient. It didn’t occur to me until the next day to tell the nurse of relevant history, that I’ve had relivings while in therapy, and wasn’t in the same danger that her regular patients may have been.

Even if I had said something, however:

  • Neither the anesthesiologist nor the attending nurse had a method of understanding how an evolutionary-determined sequential process – such as rebooting a person’s brain after prolonged anesthesia – may have therapeutic benefits.
  • They had no training to recognize aspects of neurobiologic therapeutic value in what was going on inside of me during this event, as a therapist in Dr. Arthur Janov’s Primal Therapy has.
  • The default response per medical protocol would be to shut down a patient’s expressions of their feelings.

As a result, my experience of this event was pretty much the opposite of what happens in Primal Therapy. Although I didn’t feel harmed, my reliving wasn’t therapeutic, as previous re-experiencings had been. The reliving’s progression through my levels of consciousness was purposely interrupted, and approached from a non-therapeutic direction.

Unlike my experience of coming out of anesthesia, Dr. Arthur Janov’s Primal Therapy isn’t something the patient is thrown into and potentially overwhelmed by their feelings. It’s a gradual process where the patient is in control.

This summary study showed that existing science is already in alignment with the background of Primal Therapy, that the core of human consciousness is in the limbic system and lower brain structures. My anesthesia experience showed that medical professionals are familiar with at least the outward signs of a primal reliving.

The challenge seems to be how to use this complementary knowledge for people’s benefit. What can be done with therapeutic re-experiencing so that people aren’t burdened with the continuing adverse effects of traumas?

How can scientists and medical professionals get the eyes to see what’s in front of them?

Are 50 Shades of Grey behaviors learned in infancy?

Ever wonder how someone could become attached to their early childhood abuser?

Ever wonder what underlying neurobiological conditions may account for the popularity of Fifty Shades of Grey?

This 2014 rodent study “Enduring good memories of infant trauma” linked below showed how trauma changed infants’ limbic system and lower brains. As adults, they derived a neurochemical benefit from re-experiencing the traumatic conditions:

“Trauma and pain experienced in infancy clearly led to higher rates of adult rat depression-like behavior..(but) the infant brain has limited ability to link trauma to fear areas in the brain, such as the amygdala.

These results are surprising because cues associated with trauma experienced as adults provoke fear and do not rescue depressive behavior.

It is possible that giving SSRI medications to children could be detrimental to mental health in adulthood,” Dr. Sullivan says. “We believe that our research offers the first evidence for the impact of serotonin pathways.

The infant trauma increases serotonin to produce brain programming of later life depression, and the infant trauma cue increases serotonin to alleviate the adult depressive like symptoms.”


As the study may apply to humans, let’s say that as an infant, someone was traumatized by a caregiver who, for example, bound them too tightly and left them alone for too long. What adult behaviors and other symptoms may develop as results? The person may:

  • Show depression-like symptoms that would strangely be alleviated by being bound tightly and left alone for an extended period.
  • Develop attachments to people who treated them poorly in a way that triggered them to re-experience their early childhood traumas.
  • Feel their mood lift when their infancy traumas were cued.
  • Be unable to explain and integrate with their cerebrum what was going on with their limbic system and lower brains.
  • Be caught in a circle of acting out their feelings and impulses, with unfulfilling results.

Isn’t it curious that this acting-out behavior – driven by unconscious memories of traumatic conditions – is a subject for popular entertainment? It may have resonated with personal experiences of the people who read the books and watched the movie.


What about people who want to be relieved of their symptomatic behavior? Is it a justifiable practice:

  • To pass affected people over to talk therapies that aren’t interested in directly treating the cause – a neurobiological condition that exists in the limbic system and lower brains – only the symptoms?
  • To drug affected people with the neurochemicals that their condition makes scarce – the symptoms – instead of addressing the source?

A principle of Dr. Arthur Janov’s Primal Therapy is that people are capable of treating their own originating neurobiological conditions. One of the therapeutic results is that the patient is relieved of being caught in endless circles of acting-out behavior.

That way we can have our own lives, and not be driven by what happened during early stages of our lives.

http://www.pnas.org/content/112/3/881.full “Enduring good memories of infant trauma: Rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction”

Conscious mental states should not be the first-choice explanation of behavior

Here are some 2014 ruminations by Joseph LeDoux, the grandfather of studies of the amygdala. He attempted to disambiguate feeling brain structures’ activations and responses from ideas of what feelings are, specifically regarding fear:

“Damage to the hippocampus in humans disrupts explicit conscious memory of having been conditioned but has no effect on fear conditioning itself, whereas damage to the amygdala disrupts fear conditioning but not the conscious memory of having been conditioned.

Conscious mental states should not, in the absence of direct evidence, be the first-choice explanation of behavior.

Neither amygdala activity nor amygdala-controlled responses are telltale signatures of fearful feelings.

Conscious fear can cause us to act in certain ways, but it is not the cause of the expression of defensive behaviors and physiological responses elicited by conditioned or unconditioned threats.”

http://www.pnas.org/content/111/8/2871.full “Coming to terms with fear”