An example of how we are unaware of some of the unconscious bases of our decisions

This 2014 human study provided details of how we are unaware of some of the unconscious bases of our decisions:

“We show that unconscious information can be accumulated over time and integrated with conscious elements presented either before or after to boost or diminish decision accuracy.

The unconscious information could only be used when some conscious decision-relevant information was also present.

Surprisingly, the unconscious boost in accuracy was not accompanied by corresponding increases in confidence, suggesting that we have poor metacognition for unconscious decisional evidence.”

I wouldn’t agree that these findings apply as broadly as the researchers said they did during interviews.

The first reason is that the researchers restricted the study to the subjects’ cerebrums’ visual processing. In everyday life, though, our limbic systems and lower brains are also very much involved with visual processing.

As an example, have you ever taken a nature walk where you instinctually jumped back from a vague initial impression only to find that the object was a stick? I’ve done that many times, and our shared human instincts operating with the limbic system and lower brain saved me once in childhood from stepping on a copperhead snake.

Secondly, the researchers limited the term “unconscious” to mean below visual perception of the subjects’ cerebrums.

What if, for example, the study’s visual cues included emotional content that involved the subjects’ limbic systems? The researchers may have able to develop a basis for findings that applied to common operations such as making decisions that are influenced by unconscious emotional content.

The third reason to not apply the findings as broadly as the researchers may have desired is that the researchers limited the term “metacognition” to operations of the the subjects’ cerebrums. We know that Task performance and beliefs about task responses are solely cerebral exercises, which accurately describes the metacognition experiment.

As an example of how people’s metacognitions are much broader than just their cerebrums, I take a crowded train to and from work everyday. It’s fairly straightforward to understand people’s actions, body postures, and facial expressions in terms of the combined metacognition operations of their entire brains.

Also, the metacognition finding sample size may have been too small by involving only five subjects.

http://www.pnas.org/content/111/45/16214.full “Unconscious information changes decision accuracy but not confidence”

We are attuned to perceive what our brains predict will be rewarding

What I got from this 2014 human study is that from the beginnings of our lives, we are attuned to perceive what our brains predict will be rewarding.

The subjects’ whole brains were monitored, but only areas of the cerebrum participated in the findings to a significant degree.

“Sounds associated with high rewards increase the sensitivity of vision.

The same neurons that process sensory information are modulated by reward..and thereby influence perception from the earliest stages of cortical processing.

Reward associations modulated responses in regions associated with multisensory processing in which the strength of modulation was a better predictor of the magnitude of the behavioral effect than the modulation in classical reward regions.”

Sounds a little bit like we all might have a mild case of synesthesia.

http://www.pnas.org/content/111/42/15244.full “Cross-modal effects of value on perceptual acuity and stimulus encoding”

Using expectations of oxytocin to induce positive placebo effects of touching

This 2013 Scandinavian study detailed which brain structures were involved when fooling oneself about actual sensations in favor of expected sensations.

It was hilarious how the researchers used studies of oxytocin to create expectations in the subjects:

“To induce expectation of intranasal oxytocin’s beneficial effects on painful and pleasant touch experience, participants viewed a 6-min locally developed video documentary about oxytocin’s putative prosocial effects such as involvement in bonding, love, grooming, affective touch, and healing. As all of the material was based on published research, there was no deception. The video concluded that a nasal spray of oxytocin might enhance the pleasantness of:

  • (i) stroking and
  • (ii) warm touch, and
  • (iii) reduce the unpleasantness of pain.”

Other items:

  • Only the placebo effects for the warm and pain-reducing touches were statistically significant, not the stroking touch;
  • The a priori brain areas monitored in the “sensory circuitry” included the thalamus and were all in the right brain hemisphere;
  • The a priori brain areas monitored in the “emotional appraisal circuitry” included the amygdala.

One way the researchers summarized the study was:

“Pain reduction dampened sensory processing in the brain, whereas increased touch pleasantness increased sensory processing.”

This finding demonstrated how the thalamus part of the limbic system actively controls and gates information to and from the cerebrum, similar to the Thalamus gating and control of the limbic system and cerebrum is a form of memory study.


There was a terminology problem in the study, evidenced by statements such as:

“We induced placebo improvement of both negative and positive feelings (painful and pleasant touch).”

Touch is a sensation, not a feeling or emotion. This placebo study created expectations of sensations in the subjects’ cerebrums, not expectations of emotions.

Also, including parts of the limbic system such as the amygdala in the “emotional appraisal circuitry” didn’t mean that the researchers studied feelings or emotions. We know from research summarized in the Conscious mental states should not be the first-choice explanation of behavior study that:

“Neither amygdala activity nor amygdala-controlled responses are telltale signatures of fearful feelings.

The current study cast additional light on the dubious Problematic research on human happiness study. Those researchers were fooled by a positive placebo effect!

http://www.pnas.org/content/110/44/17993.full “Placebo improves pleasure and pain through opposite modulation of sensory processing”

What happens next after a detox program predictably fails?

This 2014 study was a misguided example of looking solely at the presenting parts of a person’s condition rather than the whole historical person.

What did this study’s researchers decide after finding:

“Alcohol-dependent subjects..remained with high scores of depression, anxiety, and alcohol craving after a short-term detoxification program.”

Was it that the detox program didn’t work because it dealt with suppressing symptoms rather than addressing causes?

NO!

The researchers decided:

“Gut microbiota seems to be a previously unidentified target in the management of alcohol dependence.”

The researchers proceeded on some trendy, in-vogue aspect of their patients with which to tinker.

The researchers ignored that the correlation of the new treatment course didn’t show causation. They also ignored underlying causes for the ineffectiveness of the preceding treatments of symptoms.

Hard to see how the reviewer believed that this study would advance science.

Meanwhile, the researchers continued to ignore the elephants in the room: the relationships of the patients’ histories and their pain.

http://www.pnas.org/content/111/42/E4485.full “Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity”

Who benefits when research with no practical application becomes a politically correct meme?

Do you take a risk, as this 2013 University of Texas/Yale study concluded, because you don’t foresee how you can avoid the risk?

By making this finding, the study essentially assigned the bases of a person’s risky decisions to their cerebrum.

I wasn’t persuaded. The conclusion was reached because the study’s design only engaged the subjects’ cerebrums with a video game task involving popping balloons. See Task performance and beliefs about task responses are solely cerebral exercises for a similar point.

If the researchers had instead designed a study that also engaged the subjects’ limbic system and lower brains, the findings may have been different.


Only one of the news articles covered this story with some accuracy, io9.com:

Helfinstein (the lead researcher) doesn’t see any direct, practical applications of the research. After all, people don’t spend their lives in fMRI scanners, so it’s not as if we can tell when people are going to make a risky decision in their day-to-day activities.”

Compare that with the majority of the news coverage that hijacked the study’s findings to try to develop a politically correct meme:

“Many health-relevant risky decisions share this same structure, such as when deciding how many alcoholic beverages to drink before driving home or how much one can experiment with drugs or cigarettes before developing an addiction.”

The study found that “risk taking may be due, in part, to a failure of the control systems necessary to initiate a safe choice.” The brain areas were “primarily located in regions more active when preparing to avoid a risk than when preparing to engage in one.” These areas included the “bilateral parietal and motor regions, anterior cingulate cortex, bilateral insula, and bilateral lateral orbitofrontal cortex.”

Notice that just one of the studied brain areas (the anterior cingulate cortex) is part of the limbic system or lower brains, although the bilateral insula connects to the limbic system. Yet the limbic system and lower parts of the brain are most often the brain areas that drive real-world risky behaviors such as smoking, drug use, sexual risk taking, and unsafe driving.

A video game task of popping balloons that engaged the cerebrum was NOT informative to the cause-and-effect of the emotions and instincts and impulses from limbic system and lower brains that predominantly drive risky behavior.

Who may benefit from the misinterpretations and misdirections of the study’s findings? We can take clues from the five applicable NIH grants (UL1-DE019580, RL1MH083268, RL1MH083269, RL1DA024853, PL1MH083271) and the researchers’ statement:

“We were able to predict choice category successfully in 71.8% of cases.”

Anybody ever read Philip K. Dick?

http://www.pnas.org/content/111/7/2470.full “Predicting risky choices from brain activity patterns”

Task performance and beliefs about task responses are solely cerebral exercises

This 2013 human study provided details of which areas of the cerebrum participated in objective performance of a task vs. the subjects’ subjective confidence in their task responses:

“These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states.”

The subjects’ limbic systems were monitored during the fMRI and subsequent reporting, but the subjects’ limbic system areas weren’t activated during any of the experiments.

The researchers demonstrated that both task participation and subjective beliefs about the tasks were only cerebral exercises.

These findings should inform studies such as:

to neither characterize subjects’ task responses as “positive feelings” nor to ascribe emotions such as happiness to the subjects’ cerebral exercises.

http://www.pnas.org/content/110/28/11577.full “Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs”

Can a study exclude the limbic system and adequately find how we process value?

This 2014 human study was notable for defining away the limbic system and lower brain from consideration in processing positive and negative stimuli for value.

However, the researchers didn’t fully reveal their biases until the last paragraph of the supplementary material, where they were obligated to comment on a previous study that included the limbic system. Good for the reviewer if that was how the researchers became obligated to deal with the previous study.

It isn’t difficult to include the limbic system in studies of value. For example, the Teenagers value rewards more and are more sensitive to punishments than are adults study found:

  • Cerebral areas increased activity when the expected value of the reward increased.
  • Limbic system areas increased activity when the expected value of the reward decreased.

http://www.pnas.org/content/111/13/5000.full “Disentangling neural representations of value and salience in the human brain”

Teenagers value rewards more and are more sensitive to punishments than are adults

This 2013 human study found that adolescents placed more value on rewards than did adults. Adolescents were also more sensitive to punishments than were adults.

Cerebral areas increased activity when the expected value of the reward increased. Limbic system areas increased activity when the expected value of the reward decreased.

The left ventral striatum was the brain area that had the most increase in activity in adolescents compared with adults when the expected value of the reward increased. This brain area is usually not fully developed until people are in their mid 20s.

As the researchers noted as a limitation of the study:

“Without including preadolescents it is not possible to say with certainty whether the observed difference is a uniquely adolescent sensitivity to expected value or part of an ongoing developmental trajectory.”

Another limitation of the study was that it studied only 22 teens aged 13 to 17. Nineteen adults were studied with an average age of 28.

http://www.pnas.org/content/111/4/1646.full “Neural representation of expected value in the adolescent brain”

Problematic research: If you don’t feel empathy for a patient, is the solution to fake it?

If you don’t experience empathy for another person, this 2014 Harvard study showed how to use your cerebrum to manipulate your limbic system into displaying a proxy of empathy.

Is this what we want from our human interactions? To have a way to produce an emotion the same way that an actor would as they read their lines?

How to finesse the effect of “no empathy” was the focus. Because these researchers didn’t define a lack of genuine empathy as a symptom of a fundamental problem, they absolved themselves from investigating any underlying causes.

Nice trick in the academic world.


In the real world, in which we are feeling human beings, what may be a cause of no empathy?

Let’s say that someone is in a position that helps people. They have daily encounters where they may be expected to be empathetic, but they seldom have these feelings for others.

One hypothesis of Dr. Arthur Janov’s Primal Therapy is this condition’s origin may be that in the past, a person needed help as a matter of survival, and they weren’t helped. Their unconscious memories of being helpless impel them to act out being helpful in their current life.

This person’s frequent reaction to any hint in the present of the agony of not receiving help back when they desperately needed it is to act out what they needed to have done back then. Helping others also gives them momentary distraction from such painful memories, but any relief is transitory. So they repeat the process.

Let’s say that unconscious needs pressed them into making a career choice of actively helping people. They’re usually too caught up in their own thoughts and feelings and behavior, though, to sense feelings of the people they’re helping.

Something isn’t right, but what’s the problem? They see indicators such as: their actions that should feel fulfilling aren’t fulfilling, they seldom feel empathy, and so on.


Primal Therapy allows patients to therapeutically address origins of such conditions. A symptom such as lack of empathy for others will resolve as historical pains are ameliorated.

Or we can do as this study suggested: produce an inauthentic display – and thereby ignore the lack of empathy as a symptom – and never address causes of no empathy.

http://www.pnas.org/content/111/12/4415.full “Episodic simulation and episodic memory can increase intentions to help others”

Problematic research on human happiness

This 2014 UK study provided an example of researchers inappropriately ignoring the limbic system and lower brains when allegedly researching emotions. Only cerebral areas were measured and considered in the researchers’ efforts to measure the subjects’ happiness.

Efforts to determine emotions by cerebral measurements seldom reveal what people actually feel. What’s measured is a construct of people’s cerebrums – a proxy for their emotions – that may not have anything to do with what people actually feel at the time.

It may have been more appropriate to characterize the subjects’ self-reports of happiness as “This is what I think I should tell the researchers about what I think I should feel.”

What we think we should feel is separate from what we actually feel. Limbic system and lower brain measurements need to be taken and considered when subjects self-report degrees of happiness if the researchers intend to draw conclusions about feelings of happiness.

“We show that emotional reactivity in the form of momentary happiness in response to outcomes of a probabilistic reward task is explained not by current task earnings, but by the combined influence of recent reward expectations and prediction errors arising from those expectations.”

It was the researchers’ cerebral exercise of expectations and prediction errors to find:

“Moment-to-moment happiness reflects not just how well things are going, but whether things are going better than expected.”

Informed by the Using expectations of oxytocin to induce positive placebo effects of touching is a cerebral exercise study, I consider the current study to be one big demonstration of how researchers can be fooled by a positive placebo effect!

http://www.pnas.org/content/111/33/12252.full “A computational and neural model of momentary subjective well-being”

Weakening memories by mispredicting their contexts

This 2014 human study showed that:

“Item memories are weakened when they are mispredicted by their context..weakening of the synapses that support the item’s representation in memory.

Note that our use of the term “pruning” is not meant to imply that traces are being deleted completely from memory.

Connecting the dots, two studies showed that our memories are formed within specific contexts and that our memories have contexts with specific places and times.

http://www.pnas.org/content/111/24/8997.full “Pruning of memories by context-based prediction error”