Intergenerational epigenetic inheritance of trained immunity

I’ll curate this 2021 rodent study Transmission of trained immunity and heterologous resistance to infections across generations (not freely available) through two instances of its news coverage:

“Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. Progeny of trained mice exhibited cellular, developmental, transcriptional, and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment.

Progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous [elicits a reaction in a nonspecific antibody] Escherichia coli and Listeria monocytogenes infections. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.”


Its most frequent coverages were repetitions of a press release from an institution that funded this research:

“How does this transmission of immunization to subsequent generations work? In contrast to the classical theory of evolution, which assumes slow adaptation through changes in genetic code, this involves very rapid changes via epigenetic regulation of gene activities, irrespective of genetic code.”

https://medicalxpress.com/news/2021-10-epigenetics-immunization-offspring.html “Epigenetics: Immunization is passed on to offspring”

Not much objectivity in a sponsor’s press release. May as well ask a coworker if they had a good vacation.


And the second:

“When either parent was subjected to real or simulated infection, offspring showed a stronger immune response to potential pathogens, including E. coli bacteria, than controls whose parents hadn’t been subjected to an immune system challenge. They had lower numbers of the bacteria in their lungs and liver, as well as higher concentrations of immune cells and pro-inflammatory cytokines. The effect persisted further: offspring of these second-generation mice also showed a lower bacterial burden after infection.

One weakness of the study is that results do not clearly show how enhanced immunity is being transferred from parent to offspring. The study found that fungal infection induced changes in sperm DNA methylation. But female mice who recovered from infection also produced offspring with fortified immune systems.”

https://www.the-scientist.com/news-opinion/mice-that-survive-infection-pass-on-stronger-immunity-69324 “Mice that Survive Infection Pass on Stronger Immunity”

This reporter gathered good comments from unassociated researchers, but whiffed overall by misinterpreting intergenerational epigenetic inheritance as transgenerational epigenetic inheritance. Per definitions in A review of epigenetic transgenerational inheritance of reproductive disease and Transgenerational effects of early environmental insults on aging and disease, for the term “transgenerational transmission” to apply, researchers need to provide evidence in at least the next 2 male or non-gestating female generations and/or 3 gestating female generations of:

“Altered epigenetic information between generations in the absence of continued environmental exposure.”

I’ll ask about their plans regarding continuing to a F3 generation for further epigenetic inheritance evidence. The interviewed coauthor didn’t indicate that was their current direction, though.

While we wait, train your body’s antioxidant response elements and immune system every day. Exercise your endogenous responses with weak pro-inflammatory isothiocyanates in broccoli sprouts, and your gut with weak antigens in yeast cell wall β-glucan. Daily drills will keep your body’s systems tuned up and ready for both these specific challenges as well as others per this study’s referenced heterologous findings.

Seconds to sunrise

PXL_20211031_112819792

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.