A 2024 rodent study investigated sulphoraphane’s capability to enhance injured peripheral nerve regeneration:
“We provide in vivo evidence for the regenerative potency of sulforaphane (SFN) for peripheral nerve injury. This effect appears to be predominantly based on the ability of SFN to activate the Nrf2 transcription factor and its versatile downstream effector, HO-1, in cells of the peripheral nerve, in particular Schwann cells.
With regard to translational implications, we chose a dosage of SFN in our mouse model that corresponds to a human equivalent dose of approximately 50–100 mg per day. This dosage of SFN is well achievable with commercially available dietary supplements.

Regenerative benefits of Nrf2/HO-1 activation in the peripheral nerve were previously established in a study using dimethyl fumarate (DMF). Due to the immunosuppressive effects of DMF and its potential side effects such as gastrointestinal effects and flushes, this drug can only be used to a limited extent to promote nerve regeneration.
Given the ubiquitous expression and versatile actions of HO-1, our findings suggest that SFN may also be beneficial for neuropathies in general. As a downstream effector of IL-10, the protective and regenerative potency of HO-1 may also apply to inflammatory neuropathies in particular.
SFN sustains the Nrf2/HO-1 pathway, promoting nerve regeneration and facilitating Schwann cell functions, which may include survival, proliferation, and autophagy for myelin debris clearance. These findings suggest that SFN could serve as a valuable therapeutic approach for addressing peripheral nerve injuries, neuropathies, and inflammatory neuropathies, potentially offering renewed prospects for patients contending with these debilitating conditions.”
https://www.mdpi.com/2076-3921/13/9/1038 “Enhancement of Heme-Oxygenase 1 in the Injured Peripheral Nerve Following Sulforaphane Administration Fosters Regeneration via Proliferation and Maintenance of Repair Schwann Cells”
A human-equivalent to this study’s daily 10 mg sulforaphane dose is (10 mg x .081) x 70 kg = 57 mg, albeit the mouse dose was injected intraperitoneally. These researchers apparently hedged their human equivalent of “approximately 50–100 mg per day” to account for administration method differences in bioavailability between oral and intraperitoneal.





