Nanoencapsulating Brassica bioactives with Brassica membrane vesicles

Two 2022 in vitro studies from the group that published Red cabbage effects on gut microbiota, with the first nanoencapsulating sulforaphane:

“Sulforaphane (SFN) loaded into membrane vesicles derived from broccoli plants was studied to determine anti-inflammatory potential in a human-macrophage-like in vitro cell model under both normal and inflammatory conditions.

LPS increased IL-6 levels 1.86-fold. All compounds (free SFN, unloaded broccoli membrane (BM)-vesicles, and encapsulated SFN) mediated a dose-dependent reduction in IL-6, both in basal conditions [left] and simulated inflammatory conditions [right]. Encapsulated SFN had the greatest power.

Il-6 nanoencapsulated sulforaphane

These results showed that membrane vesicles by themselves had anti-inflammatory properties. Possible routes of administration of BM-vesicles loaded with SFN are parenteral, transdermal, and oral.”

https://www.mdpi.com/1422-0067/23/4/1940/htm “Membrane Vesicles for Nanoencapsulated Sulforaphane Increased Their Anti-Inflammatory Role on an In Vitro Human Macrophage Model”


A second study nanoencapsulated Bimi®, a crossbreed between broccoli and green Chinese kale:

“The aim of this work was to increase stability of isothiocyanates (ITCs) present in extracts of Bimi® edible parts by nanoencapsulation using cauliflower-derived plasma membrane vesicles.

Bimi® has emerged as a mild-flavoured option to pungent broccoli. As a raw gourmet material, Bimi® is highly and carefully selected, with part of edible production discarded.

Indole glucosinolates (GSLs) represented 81% of total GSL content. The only aliphatic GSL detected in a quantifiable amount was glucoraphanin, accounting for 19% of total GSLs.

1-s2.0-S0308814622006422-gr1_lrg

Comparisons between concentrations of ITCs in gastric and intestinal digestions:

A) 3,3-diindolylmethane (DIM);

  • Bimi® extract increased 2 times, and no differences in nanoencapsulated treatment after intestinal digestion.
  • Concentrations were 4- and 2-fold higher in the nanoencapsulated form than extract between gastric and intestinal digestions, respectively.

B) Indole-3-carbinol (I3C);

  • Bimi® extract increased 1.5 times, and nanoencapsulated treatment decreased 23% after intestinal digestion.
  • Concentrations were 3 times higher and 2 times higher in the nanoencapsulated form than extract between gastric and intestinal digestions, respectively.

C) SFN

  • Bimi® extract increased almost 10 times, and 100 times in nanoencapsulated treatment after intestinal digestion.
  • No differences between treatments after gastric digestion, but concentrations were 6 times higher in the nanoencapsulated form than extract after intestinal digestion.

Cauliflower-derived plasma membrane vesicles are able to enhance stability of ITCs through in vitro gastrointestinal digestion, improving their bioaccessibility and potential bioavailability.”

https://www.sciencedirect.com/science/article/pii/S0308814622006422 “Nanoencapsulation of Bimi® extracts increases its bioaccessibility after in vitro digestion and evaluation of its activity in hepatocyte metabolism”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.