Findings, or fun with numbers?

This 2022 rodent study investigated bone mass phenotypes and sulforaphane:

“Mouse strains can have divergent basal bone mass, yet this phenotype is seldom reflected in the design of studies seeking to identify new modulators of bone resorption by osteoclasts. Sulforaphane exerts inhibitory effects on in vitro osteoclastogenesis in cells from C57BL/6 mice. We explore whether a divergent basal bone mass in different mouse strains is linked both to in vitro osteoclastogenic potential and to SFX-01 sensitivity.

osteoclasts in three mouse strains

Powerful antioxidants are an alternative to achieve beneficial bone effects and avoidance of osteoporotic bone loss. Sulforaphane (SFN) is a natural antioxidant found at high levels (as glucoraphanin) in cruciferous vegetables. SFN activates the NRF2 pathway and has anti-inflammatory effects, protecting against oxidative stress in many cell types.

These findings suggest that BM cells derived from animals with a high in vivo bone mass are less sensitive to M-CSF and RANKL in vitro leading to lower osteoclastogenesis. They also support the hypothesis that similar sensitivity extends to inhibitory effects of SFX-01 on osteoclast formation/function.

It is important to stress that osteoclasts generated in these strains may simply undergo multinucleation in a manner related to their underpinning genetics, and that by coincidence alone this is matched to their bone mass.”

https://onlinelibrary.wiley.com/doi/10.1002/cbf.3734 “High bone mass in mice can be linked to lower osteoclast formation, resorptive capacity, and restricted in vitro sensitivity to inhibition by stable sulforaphane”


I curated this study primarily for its honesty. I’ll link this post to future posts of studies where researchers lack similar honesty.

PXL_20220812_094158896

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.